Predicting seizure recurrence after an initial seizure-like episode from routine clinical notes using large language models: a retrospective cohort study

回顾性队列研究 医学 队列 癫痫 逻辑回归 病历 队列研究 儿科 人口 诊断代码 内科学 精神科 环境卫生
作者
Brett K. Beaulieu‐Jones,Mauricio F. Villamar,Philip Scordis,Ana Paula Bartmann,Waqar Ali,Benjamin D. Wissel,Emily Alsentzer,Johann de Jong,A. K. Patra,Isaac S. Kohane
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (12): e882-e894 被引量:1
标识
DOI:10.1016/s2589-7500(23)00179-6
摘要

The evaluation and management of first-time seizure-like events in children can be difficult because these episodes are not always directly observed and might be epileptic seizures or other conditions (seizure mimics). We aimed to evaluate whether machine learning models using real-world data could predict seizure recurrence after an initial seizure-like event.This retrospective cohort study compared models trained and evaluated on two separate datasets between Jan 1, 2010, and Jan 1, 2020: electronic medical records (EMRs) at Boston Children's Hospital and de-identified, patient-level, administrative claims data from the IBM MarketScan research database. The study population comprised patients with an initial diagnosis of either epilepsy or convulsions before the age of 21 years, based on International Classification of Diseases, Clinical Modification (ICD-CM) codes. We compared machine learning-based predictive modelling using structured data (logistic regression and XGBoost) with emerging techniques in natural language processing by use of large language models.The primary cohort comprised 14 021 patients at Boston Children's Hospital matching inclusion criteria with an initial seizure-like event and the comparison cohort comprised 15 062 patients within the IBM MarketScan research database. Seizure recurrence based on a composite expert-derived definition occurred in 57% of patients at Boston Children's Hospital and 63% of patients within IBM MarketScan. Large language models with additional domain-specific and location-specific pre-training on patients excluded from the study (F1-score 0·826 [95% CI 0·817-0·835], AUC 0·897 [95% CI 0·875-0·913]) performed best. All large language models, including the base model without additional pre-training (F1-score 0·739 [95% CI 0·738-0·741], AUROC 0·846 [95% CI 0·826-0·861]) outperformed models trained with structured data. With structured data only, XGBoost outperformed logistic regression and XGBoost models trained with the Boston Children's Hospital EMR (logistic regression: F1-score 0·650 [95% CI 0·643-0·657], AUC 0·694 [95% CI 0·685-0·705], XGBoost: F1-score 0·679 [0·676-0·683], AUC 0·725 [0·717-0·734]) performed similarly to models trained on the IBM MarketScan database (logistic regression: F1-score 0·596 [0·590-0·601], AUC 0·670 [0·664-0·675], XGBoost: F1-score 0·678 [0·668-0·687], AUC 0·710 [0·703-0·714]).Physician's clinical notes about an initial seizure-like event include substantial signals for prediction of seizure recurrence, and additional domain-specific and location-specific pre-training can significantly improve the performance of clinical large language models, even for specialised cohorts.UCB, National Institute of Neurological Disorders and Stroke (US National Institutes of Health).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中华有为发布了新的文献求助10
1秒前
yana完成签到,获得积分10
1秒前
科目三应助卡卡采纳,获得10
1秒前
2秒前
XHZGG完成签到 ,获得积分10
3秒前
aiming完成签到,获得积分10
4秒前
shengChen发布了新的文献求助10
4秒前
热心的皮完成签到 ,获得积分10
4秒前
hhhhhhan616完成签到,获得积分10
4秒前
尉迟明风完成签到 ,获得积分10
4秒前
珲雯完成签到,获得积分10
4秒前
xinxin发布了新的文献求助10
5秒前
朱孝培完成签到,获得积分10
5秒前
247793325发布了新的文献求助20
5秒前
加油呀完成签到,获得积分10
5秒前
聪明可爱小绘理完成签到,获得积分10
5秒前
36456657应助啱啱采纳,获得10
5秒前
桐桐应助韦威风采纳,获得10
6秒前
6秒前
6秒前
zc98完成签到,获得积分10
7秒前
ygr应助Hao采纳,获得10
7秒前
NEMO发布了新的文献求助10
8秒前
李爱国应助神勇的戒指采纳,获得10
8秒前
9秒前
思源应助kekao采纳,获得10
9秒前
9秒前
tengli发布了新的文献求助10
9秒前
SHIKAMARU完成签到,获得积分10
11秒前
杨尚朋完成签到,获得积分10
11秒前
11秒前
11秒前
Akim应助esdeath采纳,获得10
12秒前
科研通AI5应助Inahurry采纳,获得10
12秒前
小赵完成签到,获得积分10
13秒前
zhui发布了新的文献求助10
13秒前
13秒前
14秒前
sakurai应助Maxw采纳,获得10
14秒前
xiangxl发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794