Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions

环境科学 温室气体 反演(地质) 气象学 大气科学 大气扩散模型 空间分布 反向 湍流 物理 遥感 数学 地质学 空气污染 化学 古生物学 海洋学 几何学 有机化学 构造盆地
作者
Ioannis Katharopoulos,Dominique Rust,Martin K. Vollmer,Dominik Brunner,Stefan Reimann,Simon O’Doherty,Dickon Young,Kieran M. Stanley,Tanja Schuck,Jgor Arduini,Lukas Emmenegger,Stephan Henne
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:23 (22): 14159-14186 被引量:1
标识
DOI:10.5194/acp-23-14159-2023
摘要

Abstract. Inverse modeling is a widely used top-down method to infer greenhouse gas (GHG) emissions and their spatial distribution based on atmospheric observations. The errors associated with inverse modeling have multiple sources, such as observations and a priori emission estimates, but they are often dominated by the transport model error. Here, we utilize the Lagrangian particle dispersion model (LPDM) FLEXPART (FLEXible PARTicle Dispersion Model), driven by the meteorological fields of the regional numerical weather prediction model COSMO. The main sources of errors in LPDMs are the turbulence diffusion parameterization and the meteorological fields. The latter are outputs of an Eulerian model. Recently, we introduced an improved parameterization scheme of the turbulence diffusion in FLEXPART, which significantly improves FLEXPART-COSMO simulations at 1 km resolution. We exploit F-gas measurements from two extended field campaigns on the Swiss Plateau (in Beromünster and Sottens), and we conduct both high-resolution (1 km) and low-resolution (7 km) FLEXPART transport simulations that are then used in a Bayesian analytical inversion to estimate spatial emission distributions. Our results for four F-gases (HFC-134a, HFC-125, HFC-32, SF6) indicate that both high-resolution inversions and a dense measurement network significantly improve the ability to estimate spatial distribution of the emissions. Furthermore, the total emission estimates from the high-resolution inversions (351 ± 44 Mg yr−1 for HFC-134a, 101 ± 21 Mg yr−1 for HFC-125, 50 ± 8 Mg yr−1 for HFC-32, 9.0 ± 1.1 Mg yr−1 for SF6) are significantly higher compared to the low-resolution inversions (20 %–40 % increase) and result in total a posteriori emission estimates that are closer to national inventory values as reported to the UNFCCC (10 %–20 % difference between high-resolution inversion estimates and inventory values compared to 30 %–40 % difference between the low-resolution inversion estimates and inventory values). Specifically, we attribute these improvements to a better representation of the atmospheric flow in complex terrain in the high-resolution model, partly induced by the more realistic topography. We further conduct numerous sensitivity inversions, varying different parameters and variables of our Bayesian inversion framework to explore the whole range of uncertainty in the inversion errors (e.g., inversion grid, spatial distribution of a priori emissions, covariance parameters like baseline uncertainty and spatial correlation length, temporal resolution of the assimilated observations, observation network, seasonality of emissions). From the abovementioned parameters, we find that the uncertainty of the mole fraction baseline and the spatial distribution of the a priori emissions have the largest impact on the a posteriori total emission estimates and their spatial distribution. This study is a step towards mitigating the errors associated with the transport models and better characterizing the uncertainty inherent in the inversion error. Improvements in the latter will facilitate the validation and standardization of national GHG emission inventories and support policymakers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷傲海完成签到,获得积分10
1秒前
文静新烟发布了新的文献求助10
2秒前
深情安青应助v321采纳,获得10
2秒前
ly发布了新的文献求助10
2秒前
2秒前
bwod发布了新的文献求助10
3秒前
Lsmile发布了新的文献求助10
3秒前
赘婿应助peng采纳,获得10
3秒前
FaiRe发布了新的文献求助10
3秒前
3秒前
徐枘完成签到,获得积分10
4秒前
LD发布了新的文献求助10
4秒前
4秒前
SciGPT应助下次见采纳,获得10
4秒前
Gzh_NJ完成签到,获得积分10
4秒前
ll完成签到,获得积分10
4秒前
wenwen完成签到,获得积分10
5秒前
小6发布了新的文献求助30
5秒前
Beverly发布了新的文献求助10
5秒前
老神在在完成签到,获得积分10
6秒前
7秒前
7秒前
飘逸之玉完成签到,获得积分10
8秒前
8秒前
8秒前
Liz完成签到,获得积分10
9秒前
chenlei完成签到,获得积分10
9秒前
徐枘发布了新的文献求助10
9秒前
9秒前
bjy完成签到 ,获得积分10
9秒前
慕青应助彪壮的元柏采纳,获得10
9秒前
科研乞丐应助柚子采纳,获得20
9秒前
hongliyu98完成签到,获得积分10
10秒前
11秒前
11秒前
大模型应助谨慎初曼采纳,获得10
11秒前
老神在在发布了新的文献求助10
11秒前
11秒前
CipherSage应助醉熏的海亦采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322