Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions

环境科学 温室气体 反演(地质) 气象学 大气科学 大气扩散模型 空间分布 反向 湍流 物理 遥感 数学 地质学 空气污染 化学 古生物学 海洋学 几何学 有机化学 构造盆地
作者
Ioannis Katharopoulos,Dominique Rust,Martin K. Vollmer,Dominik Brunner,Stefan Reimann,Simon O’Doherty,Dickon Young,Kieran M. Stanley,Tanja Schuck,Jgor Arduini,Lukas Emmenegger,Stephan Henne
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:23 (22): 14159-14186 被引量:1
标识
DOI:10.5194/acp-23-14159-2023
摘要

Abstract. Inverse modeling is a widely used top-down method to infer greenhouse gas (GHG) emissions and their spatial distribution based on atmospheric observations. The errors associated with inverse modeling have multiple sources, such as observations and a priori emission estimates, but they are often dominated by the transport model error. Here, we utilize the Lagrangian particle dispersion model (LPDM) FLEXPART (FLEXible PARTicle Dispersion Model), driven by the meteorological fields of the regional numerical weather prediction model COSMO. The main sources of errors in LPDMs are the turbulence diffusion parameterization and the meteorological fields. The latter are outputs of an Eulerian model. Recently, we introduced an improved parameterization scheme of the turbulence diffusion in FLEXPART, which significantly improves FLEXPART-COSMO simulations at 1 km resolution. We exploit F-gas measurements from two extended field campaigns on the Swiss Plateau (in Beromünster and Sottens), and we conduct both high-resolution (1 km) and low-resolution (7 km) FLEXPART transport simulations that are then used in a Bayesian analytical inversion to estimate spatial emission distributions. Our results for four F-gases (HFC-134a, HFC-125, HFC-32, SF6) indicate that both high-resolution inversions and a dense measurement network significantly improve the ability to estimate spatial distribution of the emissions. Furthermore, the total emission estimates from the high-resolution inversions (351 ± 44 Mg yr−1 for HFC-134a, 101 ± 21 Mg yr−1 for HFC-125, 50 ± 8 Mg yr−1 for HFC-32, 9.0 ± 1.1 Mg yr−1 for SF6) are significantly higher compared to the low-resolution inversions (20 %–40 % increase) and result in total a posteriori emission estimates that are closer to national inventory values as reported to the UNFCCC (10 %–20 % difference between high-resolution inversion estimates and inventory values compared to 30 %–40 % difference between the low-resolution inversion estimates and inventory values). Specifically, we attribute these improvements to a better representation of the atmospheric flow in complex terrain in the high-resolution model, partly induced by the more realistic topography. We further conduct numerous sensitivity inversions, varying different parameters and variables of our Bayesian inversion framework to explore the whole range of uncertainty in the inversion errors (e.g., inversion grid, spatial distribution of a priori emissions, covariance parameters like baseline uncertainty and spatial correlation length, temporal resolution of the assimilated observations, observation network, seasonality of emissions). From the abovementioned parameters, we find that the uncertainty of the mole fraction baseline and the spatial distribution of the a priori emissions have the largest impact on the a posteriori total emission estimates and their spatial distribution. This study is a step towards mitigating the errors associated with the transport models and better characterizing the uncertainty inherent in the inversion error. Improvements in the latter will facilitate the validation and standardization of national GHG emission inventories and support policymakers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助cancan采纳,获得10
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
迷茫的一代完成签到,获得积分10
2秒前
baihehuakai发布了新的文献求助10
4秒前
开心若菱完成签到 ,获得积分10
4秒前
高贵的馒头完成签到,获得积分10
4秒前
4秒前
4秒前
aaa发布了新的文献求助30
10秒前
布吉岛发布了新的文献求助10
11秒前
亦安完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
柔弱的便当完成签到,获得积分10
15秒前
16秒前
16秒前
fanlin完成签到,获得积分0
18秒前
布吉岛完成签到,获得积分10
18秒前
知行者发布了新的文献求助10
20秒前
my发布了新的文献求助10
20秒前
hzy完成签到,获得积分10
20秒前
21秒前
AJY发布了新的文献求助10
25秒前
26秒前
Ava应助zfd采纳,获得10
26秒前
司佳雨完成签到,获得积分10
27秒前
echo完成签到 ,获得积分10
28秒前
29秒前
SciGPT应助OU采纳,获得10
30秒前
小福发布了新的文献求助10
32秒前
33秒前
33秒前
英俊的铭应助尤其采纳,获得10
34秒前
AJY完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
xxm发布了新的文献求助10
37秒前
zfd发布了新的文献求助10
37秒前
my关闭了my文献求助
38秒前
冷傲的帽子完成签到 ,获得积分10
38秒前
40秒前
zongjian3完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637