亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of transport model resolution and a priori assumptions on inverse modeling of Swiss F-gas emissions

环境科学 温室气体 反演(地质) 气象学 大气科学 大气扩散模型 空间分布 反向 湍流 物理 遥感 数学 地质学 空气污染 化学 有机化学 古生物学 海洋学 构造盆地 几何学
作者
Ioannis Katharopoulos,Dominique Rust,Martin K. Vollmer,Dominik Brunner,Stefan Reimann,Simon O’Doherty,Dickon Young,Kieran M. Stanley,Tanja Schuck,Jgor Arduini,Lukas Emmenegger,Stephan Henne
出处
期刊:Atmospheric Chemistry and Physics [Copernicus Publications]
卷期号:23 (22): 14159-14186 被引量:1
标识
DOI:10.5194/acp-23-14159-2023
摘要

Abstract. Inverse modeling is a widely used top-down method to infer greenhouse gas (GHG) emissions and their spatial distribution based on atmospheric observations. The errors associated with inverse modeling have multiple sources, such as observations and a priori emission estimates, but they are often dominated by the transport model error. Here, we utilize the Lagrangian particle dispersion model (LPDM) FLEXPART (FLEXible PARTicle Dispersion Model), driven by the meteorological fields of the regional numerical weather prediction model COSMO. The main sources of errors in LPDMs are the turbulence diffusion parameterization and the meteorological fields. The latter are outputs of an Eulerian model. Recently, we introduced an improved parameterization scheme of the turbulence diffusion in FLEXPART, which significantly improves FLEXPART-COSMO simulations at 1 km resolution. We exploit F-gas measurements from two extended field campaigns on the Swiss Plateau (in Beromünster and Sottens), and we conduct both high-resolution (1 km) and low-resolution (7 km) FLEXPART transport simulations that are then used in a Bayesian analytical inversion to estimate spatial emission distributions. Our results for four F-gases (HFC-134a, HFC-125, HFC-32, SF6) indicate that both high-resolution inversions and a dense measurement network significantly improve the ability to estimate spatial distribution of the emissions. Furthermore, the total emission estimates from the high-resolution inversions (351 ± 44 Mg yr−1 for HFC-134a, 101 ± 21 Mg yr−1 for HFC-125, 50 ± 8 Mg yr−1 for HFC-32, 9.0 ± 1.1 Mg yr−1 for SF6) are significantly higher compared to the low-resolution inversions (20 %–40 % increase) and result in total a posteriori emission estimates that are closer to national inventory values as reported to the UNFCCC (10 %–20 % difference between high-resolution inversion estimates and inventory values compared to 30 %–40 % difference between the low-resolution inversion estimates and inventory values). Specifically, we attribute these improvements to a better representation of the atmospheric flow in complex terrain in the high-resolution model, partly induced by the more realistic topography. We further conduct numerous sensitivity inversions, varying different parameters and variables of our Bayesian inversion framework to explore the whole range of uncertainty in the inversion errors (e.g., inversion grid, spatial distribution of a priori emissions, covariance parameters like baseline uncertainty and spatial correlation length, temporal resolution of the assimilated observations, observation network, seasonality of emissions). From the abovementioned parameters, we find that the uncertainty of the mole fraction baseline and the spatial distribution of the a priori emissions have the largest impact on the a posteriori total emission estimates and their spatial distribution. This study is a step towards mitigating the errors associated with the transport models and better characterizing the uncertainty inherent in the inversion error. Improvements in the latter will facilitate the validation and standardization of national GHG emission inventories and support policymakers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
24秒前
所所应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
39秒前
Criminology34应助科研通管家采纳,获得10
40秒前
Wmmmmm完成签到,获得积分10
41秒前
传奇3应助小祝采纳,获得10
43秒前
48秒前
1分钟前
1分钟前
杨杨发布了新的文献求助10
1分钟前
白云四季发布了新的文献求助10
1分钟前
wanci应助白云四季采纳,获得10
1分钟前
kkkl完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
李志全完成签到 ,获得积分10
3分钟前
hhuajw应助Mario采纳,获得10
3分钟前
3分钟前
科研通AI6.1应助Karol采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
神勇的又槐完成签到,获得积分10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746834
求助须知:如何正确求助?哪些是违规求助? 5439584
关于积分的说明 15355945
捐赠科研通 4886825
什么是DOI,文献DOI怎么找? 2627463
邀请新用户注册赠送积分活动 1575912
关于科研通互助平台的介绍 1532682