Differential effects of slow deep inhalation and exhalation on brain functional connectivity

脑电图 呼气 呼吸 功能连接 神经科学 模式识别(心理学) 人工智能 计算机科学 心理学 医学 麻醉
作者
S. Dey,A. S. Anusha,A. G. Ramakrishnan
标识
DOI:10.1109/conecct57959.2023.10234767
摘要

Slow conscious breathing is an integral aspect of many therapeutic techniques due to its relaxing effects. While the neuroscience of conscious breathing has been explored widely, the exact neural mechanisms linking slow breathing to its therapeutic effects are still debated. This work utilizes electroencephalography (EEG) to identify functional connections specific to the inhalation and exhalation phases of slow deep breathing at 2 cycles per minute. EEG data were collected from 20 healthy participants using the 61-channel eego mylab system from ANT Neuro. Functional connectivity (FC) for all possible pairs of EEG time series data was estimated using the phase slope index, for 7 EEG bands. Further, feature selection and classification were performed to identify functional connections that could effectively distinguish the inhale from the exhale phase of the respiratory cycle. The best accuracy of 99.08% was obtained when 340 low gamma-band functional connections were fed as input to a support vector machine with radial basis function kernel. Furthermore, the inter- and intra-cortical distribution of these functional connections was explored based on the topographical grouping of EEG electrodes. It was observed that most of the statistically significant connections were within central or between central and parieto-occipital regions of the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的雅香应助科研混子采纳,获得10
刚刚
TT发布了新的文献求助10
1秒前
李顺完成签到,获得积分20
2秒前
ayin发布了新的文献求助10
2秒前
wait发布了新的文献求助10
2秒前
我是站长才怪应助xg采纳,获得10
3秒前
童话艺术佳完成签到,获得积分10
3秒前
稀罕你完成签到,获得积分10
3秒前
junzilan发布了新的文献求助10
3秒前
anny.white完成签到,获得积分10
4秒前
科研通AI5应助平常的毛豆采纳,获得10
6秒前
SciGPT应助paul采纳,获得10
9秒前
11秒前
英姑应助书生采纳,获得10
12秒前
科研钓鱼佬完成签到,获得积分10
13秒前
15秒前
petrichor应助C_Cppp采纳,获得10
15秒前
nan完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
勤恳的雨文完成签到,获得积分10
16秒前
木森ab发布了新的文献求助10
17秒前
paul完成签到,获得积分10
17秒前
小鞋完成签到,获得积分10
18秒前
开心青旋发布了新的文献求助10
18秒前
fztnh发布了新的文献求助10
18秒前
无名花生完成签到 ,获得积分10
18秒前
20秒前
21秒前
21秒前
杜若完成签到,获得积分10
21秒前
21秒前
木森ab完成签到,获得积分20
23秒前
paul发布了新的文献求助10
24秒前
25秒前
MEME发布了新的文献求助10
28秒前
28秒前
情怀应助LSH970829采纳,获得10
28秒前
CHINA_C13发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824