Optimization of Batch Crystallization of Magnetic Lysozyme Crystals and Study of the Continuous Crystallization Process

结晶 溶菌酶 蛋白质结晶 产量(工程) 过饱和度 材料科学 化学工程 Crystal(编程语言) 结晶学 色谱法 晶体生长 过程(计算) 化学 计算机科学 生物化学 复合材料 有机化学 工程类 程序设计语言 操作系统
作者
Shanshan Yang,Lixue Hou,Min Su
出处
期刊:Processes [MDPI AG]
卷期号:11 (9): 2644-2644
标识
DOI:10.3390/pr11092644
摘要

Protein crystallization is a widely employed technique for purifying protein drugs, offering notable benefits such as cost-effectiveness and high purity. However, the success of this method is influenced by factors such as the molecular weight and spatial structure of proteins. The challenges associated with achieving crystallization and the prolonged duration required for crystallization induction pose limitations on its widespread industrial implementation. In this study, we employed lysozyme derived from egg white as a representative protein to investigate the polymer-assisted self-assembly of magnetic lysozyme. Through the optimization of the initial interstitial crystallization process of magnetic lysozyme, we manipulated the supersaturation level of lysozyme and applied magnetic nanoparticle treatment. As a result, we successfully reduced the crystallization time from 24 h to 60 min. Subsequently, the findings derived from the analysis of data pertaining to the interstitial crystallization process of lysozyme were utilized to optimize the design and configuration of a push flow crystallizer (PFC) as well as a slug flow crystallizer (SFC). The analysis encompassed the examination of various factors, including the residence time of crystallization, the yield of the process, the shape of the crystals formed, and the distribution of crystal sizes. Ultimately, it was determined that the SFC demonstrated optimal suitability for the crystallization of magnetic lysozyme. The typical V-PFC crystal size is 16 m and the yield is 60%. V-SFC crystals have an average size of 13 m and a yield of 85%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助JUSTs0so采纳,获得10
刚刚
1秒前
欣欣子完成签到 ,获得积分10
1秒前
顺利毕业发布了新的文献求助10
1秒前
西奥完成签到 ,获得积分10
1秒前
2秒前
春分夏至完成签到,获得积分10
2秒前
2秒前
远山完成签到 ,获得积分10
2秒前
2秒前
胖虎应助jiejie采纳,获得20
3秒前
HaoHao04完成签到 ,获得积分10
3秒前
Joshua发布了新的文献求助10
3秒前
乐观的莆完成签到,获得积分10
3秒前
4秒前
向日葵发布了新的文献求助10
4秒前
Orange应助白蕲采纳,获得10
4秒前
Neko完成签到,获得积分10
4秒前
Hello应助Chen采纳,获得10
4秒前
5秒前
研友_ZAVod8完成签到,获得积分10
5秒前
明月清风发布了新的文献求助10
5秒前
5秒前
柳絮发布了新的文献求助10
5秒前
5秒前
astr完成签到,获得积分10
5秒前
清爽老九发布了新的文献求助30
5秒前
爱学习发布了新的文献求助10
6秒前
orixero应助selfevidbet采纳,获得30
7秒前
温言完成签到,获得积分10
7秒前
思源应助Neko采纳,获得10
7秒前
Jasper应助通~采纳,获得10
8秒前
8秒前
wary完成签到,获得积分10
8秒前
8秒前
11发布了新的文献求助10
9秒前
10秒前
张小敏发布了新的文献求助10
10秒前
lt_zyk完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762