亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry

髓系白血病 流式细胞术 病理 医学 髓样 白血病 计算生物学 人工智能 计算机科学 癌症研究 生物 免疫学
作者
Joshua E. Lewis,Lee Cooper,David L. Jaye,Olga Pozdnyakova
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:37 (1): 100373-100373 被引量:4
标识
DOI:10.1016/j.modpat.2023.100373
摘要

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
么西么西发布了新的文献求助10
32秒前
Double发布了新的文献求助10
33秒前
所所应助罗乐天采纳,获得10
39秒前
冷傲半邪完成签到,获得积分10
59秒前
yf完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
yf发布了新的文献求助10
2分钟前
Criminology34应助兼听则明采纳,获得30
2分钟前
是菜狗子啊完成签到,获得积分10
3分钟前
nicolaslcq完成签到,获得积分0
3分钟前
语嘘嘘完成签到,获得积分10
4分钟前
laa完成签到,获得积分20
4分钟前
laa发布了新的文献求助10
4分钟前
Anthonywll完成签到 ,获得积分10
4分钟前
Orange应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得30
4分钟前
4分钟前
美好灵寒完成签到 ,获得积分10
4分钟前
SciGPT应助小东西采纳,获得10
5分钟前
5分钟前
轻松戎发布了新的文献求助10
5分钟前
烟花应助轻松戎采纳,获得10
5分钟前
思源应助DonglinHe采纳,获得10
5分钟前
6分钟前
DonglinHe发布了新的文献求助10
6分钟前
6分钟前
MchemG应助科研通管家采纳,获得30
6分钟前
打打应助Kypsi采纳,获得30
6分钟前
8分钟前
简单思萱发布了新的文献求助10
8分钟前
8分钟前
小蘑菇应助简单思萱采纳,获得10
8分钟前
Dasein完成签到 ,获得积分10
9分钟前
Perry完成签到,获得积分10
9分钟前
王饱饱完成签到 ,获得积分10
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346788
求助须知:如何正确求助?哪些是违规求助? 4481194
关于积分的说明 13947357
捐赠科研通 4379190
什么是DOI,文献DOI怎么找? 2406216
邀请新用户注册赠送积分活动 1398779
关于科研通互助平台的介绍 1371693