Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry

髓系白血病 流式细胞术 病理 医学 髓样 白血病 计算生物学 人工智能 计算机科学 癌症研究 生物 免疫学
作者
Joshua E. Lewis,Lee Cooper,David L. Jaye,Olga Pozdnyakova
出处
期刊:Modern Pathology [Springer Nature]
卷期号:37 (1): 100373-100373 被引量:4
标识
DOI:10.1016/j.modpat.2023.100373
摘要

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助奋斗的剑采纳,获得10
刚刚
嘿嘿完成签到 ,获得积分10
1秒前
科研垃圾发布了新的文献求助10
1秒前
2秒前
2秒前
达达利亚发布了新的文献求助10
3秒前
4秒前
4秒前
李健的小迷弟应助韩雨儿采纳,获得10
5秒前
Zzz完成签到,获得积分10
5秒前
嘿嘿关注了科研通微信公众号
5秒前
李健的小迷弟应助晓亦采纳,获得10
6秒前
6秒前
迅速的丑发布了新的文献求助10
6秒前
Ting发布了新的文献求助10
7秒前
乐乐应助贺兰采纳,获得10
8秒前
8秒前
Karmar完成签到 ,获得积分10
9秒前
夜雨清痕y完成签到,获得积分20
9秒前
Liu Xiaojing发布了新的文献求助10
9秒前
9秒前
9秒前
灵溪完成签到 ,获得积分10
9秒前
能HJY完成签到,获得积分10
10秒前
深情安青应助勇往直前采纳,获得10
10秒前
哈密哈密发布了新的文献求助10
10秒前
22发布了新的文献求助10
10秒前
10秒前
完美世界应助热心的乞采纳,获得10
11秒前
Rachel完成签到,获得积分20
11秒前
12秒前
周斯豪发布了新的文献求助10
12秒前
yx发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
15秒前
Ava应助阁下宛歆采纳,获得10
15秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128391
求助须知:如何正确求助?哪些是违规求助? 2779189
关于积分的说明 7742085
捐赠科研通 2434459
什么是DOI,文献DOI怎么找? 1293544
科研通“疑难数据库(出版商)”最低求助积分说明 623317
版权声明 600514