已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry

髓系白血病 流式细胞术 病理 医学 髓样 白血病 计算生物学 人工智能 计算机科学 癌症研究 生物 免疫学
作者
Joshua E. Lewis,Lee Cooper,David L. Jaye,Olga Pozdnyakova
出处
期刊:Modern Pathology [Springer Nature]
卷期号:37 (1): 100373-100373 被引量:4
标识
DOI:10.1016/j.modpat.2023.100373
摘要

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻笑晴完成签到 ,获得积分10
1秒前
Rjy完成签到 ,获得积分10
1秒前
1秒前
乐乐应助zzzzz采纳,获得10
3秒前
彭于晏应助英勇羿采纳,获得10
3秒前
Zp完成签到,获得积分10
3秒前
可爱的函函应助小坚果采纳,获得10
3秒前
7秒前
不愿透露姓名科研人完成签到 ,获得积分10
7秒前
7秒前
英勇羿完成签到,获得积分10
8秒前
zhuann发布了新的文献求助10
9秒前
wry完成签到,获得积分10
11秒前
11秒前
年轻宝川发布了新的文献求助30
11秒前
李健应助wangjue采纳,获得10
12秒前
张淼发布了新的文献求助10
12秒前
Thanks完成签到 ,获得积分10
13秒前
Mayily完成签到,获得积分10
14秒前
你嵙这个期刊没买完成签到,获得积分10
14秒前
小坚果发布了新的文献求助10
17秒前
唠叨的夏烟完成签到 ,获得积分10
18秒前
18秒前
18秒前
奶茶麻辣烫完成签到,获得积分10
19秒前
和谐的清完成签到,获得积分20
21秒前
善学以致用应助郑秋英采纳,获得10
21秒前
21秒前
一杯茶具完成签到 ,获得积分10
22秒前
朴素海亦完成签到 ,获得积分10
22秒前
Lshyong完成签到 ,获得积分0
23秒前
糟糕的颜完成签到 ,获得积分10
23秒前
23秒前
23秒前
zhuann完成签到,获得积分20
23秒前
23秒前
DZ发布了新的文献求助10
23秒前
科研通AI6应助djbj2022采纳,获得10
24秒前
捏个小雪团完成签到 ,获得积分10
25秒前
小坚果完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502