Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry

髓系白血病 流式细胞术 病理 医学 髓样 白血病 计算生物学 人工智能 计算机科学 癌症研究 生物 免疫学
作者
Joshua E. Lewis,Lee Cooper,David L. Jaye,Olga Pozdnyakova
出处
期刊:Modern Pathology [Springer Nature]
卷期号:37 (1): 100373-100373 被引量:4
标识
DOI:10.1016/j.modpat.2023.100373
摘要

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助cc采纳,获得10
刚刚
田様应助zw采纳,获得10
刚刚
刚刚
Ouou发布了新的文献求助10
刚刚
刚刚
刚刚
爱学习的小张完成签到,获得积分10
1秒前
清爽的雨竹完成签到,获得积分10
1秒前
1秒前
式微发布了新的文献求助10
1秒前
qwe123发布了新的文献求助10
1秒前
幸福的绿海完成签到,获得积分20
2秒前
xiaxia完成签到,获得积分10
2秒前
李颜龙完成签到,获得积分10
2秒前
Owen应助幽默从安采纳,获得10
2秒前
优秀橘子完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
sow完成签到,获得积分10
4秒前
开放千凝发布了新的文献求助30
4秒前
swgcsqy完成签到,获得积分20
4秒前
完美世界应助LS-GENIUS采纳,获得10
4秒前
5秒前
涅爹完成签到 ,获得积分10
5秒前
5秒前
5秒前
卡布完成签到,获得积分10
6秒前
6秒前
6秒前
北枳完成签到,获得积分10
6秒前
6秒前
7秒前
fantast完成签到,获得积分10
7秒前
swgcsqy发布了新的文献求助10
7秒前
重要问丝完成签到 ,获得积分10
7秒前
7秒前
柔弱的友瑶完成签到,获得积分10
8秒前
PiaoGuo发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479273
求助须知:如何正确求助?哪些是违规求助? 4580889
关于积分的说明 14377069
捐赠科研通 4509384
什么是DOI,文献DOI怎么找? 2471269
邀请新用户注册赠送积分活动 1457785
关于科研通互助平台的介绍 1431619