Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry

髓系白血病 流式细胞术 病理 医学 髓样 白血病 计算生物学 人工智能 计算机科学 癌症研究 生物 免疫学
作者
Joshua E. Lewis,Lee Cooper,David L. Jaye,Olga Pozdnyakova
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:37 (1): 100373-100373 被引量:4
标识
DOI:10.1016/j.modpat.2023.100373
摘要

The current flow cytometric analysis of blood and bone marrow samples for diagnosis of acute myeloid leukemia (AML) relies heavily on manual intervention in the processing and analysis steps, introducing significant subjectivity into resulting diagnoses and necessitating highly trained personnel. Furthermore, concurrent molecular characterization via cytogenetics and targeted sequencing can take multiple days, delaying patient diagnosis and treatment. Attention-based multi-instance learning models (ABMILMs) are deep learning models that make accurate predictions and generate interpretable insights regarding the classification of a sample from individual events/cells; nonetheless, these models have yet to be applied to flow cytometry data. In this study, we developed a computational pipeline using ABMILMs for the automated diagnosis of AML cases based exclusively on flow cytometric data. Analysis of 1820 flow cytometry samples shows that this pipeline provides accurate diagnoses of acute leukemia (area under the receiver operating characteristic curve [AUROC] 0.961) and accurately differentiates AML vs B- and T-lymphoblastic leukemia (AUROC 0.965). Models for prediction of 9 cytogenetic aberrancies and 32 pathogenic variants in AML provide accurate predictions, particularly for t(15;17)(PML::RARA) [AUROC 0.929], t(8;21)(RUNX1::RUNX1T1) (AUROC 0.814), and NPM1 variants (AUROC 0.807). Finally, we demonstrate how these models generate interpretable insights into which individual flow cytometric events and markers deliver optimal diagnostic utility, providing hematopathologists with a data visualization tool for improved data interpretation, as well as novel biological associations between flow cytometric marker expression and cytogenetic/molecular variants in AML. Our study is the first to illustrate the feasibility of using deep learning-based analysis of flow cytometric data for automated AML diagnosis and molecular characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的嫣娆完成签到,获得积分20
刚刚
Lxx完成签到,获得积分10
1秒前
彭于晏应助阿森采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
九九完成签到,获得积分10
3秒前
ZZ发布了新的文献求助10
3秒前
yyy发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
皮皮灰熊完成签到,获得积分10
4秒前
无聊的依瑶完成签到,获得积分10
5秒前
完美世界应助black采纳,获得10
5秒前
weiwei发布了新的文献求助10
5秒前
李牧发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
阿乾发布了新的文献求助10
8秒前
小白发布了新的文献求助10
8秒前
solitary1124完成签到,获得积分10
8秒前
秦可可发布了新的文献求助30
8秒前
你的左轮呢完成签到,获得积分10
8秒前
山花花完成签到,获得积分10
9秒前
9秒前
WQ发布了新的文献求助10
10秒前
文若369发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
Ling发布了新的文献求助10
12秒前
yyy完成签到,获得积分20
12秒前
问题多多应助乌梅子酱采纳,获得10
12秒前
科研通AI5应助tlotw41采纳,获得10
13秒前
black完成签到,获得积分10
13秒前
Brain发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917