Morphological diversity of cancer cells predicts prognosis across tumor types

H&E染色 组织病理学 癌症 病理 生物 数字化病理学 医学 内科学 免疫组织化学
作者
Rasoul Sali,Yuming Jiang,Armin Attaranzadeh,Brittany Holmes,Ruijiang Li
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:116 (4): 555-564 被引量:6
标识
DOI:10.1093/jnci/djad243
摘要

Abstract Background Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin–stained histopathology images. Methods We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. Results A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P < .035) in validation cohorts and further improved prognostication when combined with clinical risk factors. Conclusions Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofanwang完成签到,获得积分10
刚刚
1秒前
1秒前
左丘冥完成签到,获得积分10
2秒前
2秒前
内向的小虾米完成签到,获得积分10
3秒前
迪迪张完成签到,获得积分10
3秒前
桐桐应助小张同学采纳,获得10
3秒前
阳6完成签到 ,获得积分10
3秒前
xiaojin完成签到,获得积分10
4秒前
liu完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
大锅逢饭完成签到,获得积分10
4秒前
4秒前
志小天完成签到,获得积分10
5秒前
6秒前
自觉志泽发布了新的文献求助10
6秒前
ping完成签到 ,获得积分10
6秒前
6秒前
米子哈发布了新的文献求助10
7秒前
华仔应助刘奎冉采纳,获得30
7秒前
研友Bn完成签到 ,获得积分10
8秒前
8秒前
9秒前
xinghe123发布了新的文献求助10
9秒前
酷酷问薇完成签到,获得积分20
10秒前
10秒前
H_完成签到,获得积分10
10秒前
2024dsb完成签到 ,获得积分10
11秒前
11秒前
西行纪发布了新的文献求助10
12秒前
DreamSeker8完成签到,获得积分10
12秒前
科研通AI6应助Scorpio采纳,获得30
12秒前
12秒前
认真浩宇发布了新的文献求助10
13秒前
坚强小虾米完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809