Morphological diversity of cancer cells predicts prognosis across tumor types

H&E染色 组织病理学 癌症 病理 生物 数字化病理学 医学 内科学 免疫组织化学
作者
Rasoul Sali,Yuming Jiang,Armin Attaranzadeh,Brittany Holmes,Ruijiang Li
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:116 (4): 555-564 被引量:6
标识
DOI:10.1093/jnci/djad243
摘要

Abstract Background Intratumor heterogeneity drives disease progression and treatment resistance, which can lead to poor patient outcomes. Here, we present a computational approach for quantification of cancer cell diversity in routine hematoxylin-eosin–stained histopathology images. Methods We analyzed publicly available digitized whole-slide hematoxylin-eosin images for 2000 patients. Four tumor types were included: lung, head and neck, colon, and rectal cancers, representing major histology subtypes (adenocarcinomas and squamous cell carcinomas). We performed single-cell analysis on hematoxylin-eosin images and trained a deep convolutional autoencoder to automatically learn feature representations of individual cancer nuclei. We then computed features of intranuclear variability and internuclear diversity to quantify tumor heterogeneity. Finally, we used these features to build a machine-learning model to predict patient prognosis. Results A total of 68 million cancer cells were segmented and analyzed for nuclear image features. We discovered multiple morphological subtypes of cancer cells (range = 15-20) that co-exist within the same tumor, each with distinct phenotypic characteristics. Moreover, we showed that a higher morphological diversity is associated with chromosome instability and genomic aneuploidy. A machine-learning model based on morphological diversity demonstrated independent prognostic values across tumor types (hazard ratio range = 1.62-3.23, P < .035) in validation cohorts and further improved prognostication when combined with clinical risk factors. Conclusions Our study provides a practical approach for quantifying intratumor heterogeneity based on routine histopathology images. The cancer cell diversity score can be used to refine risk stratification and inform personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵宏伟应助杰尼乾乾采纳,获得10
刚刚
华仔应助缥缈傥采纳,获得10
刚刚
ZhouQixing完成签到,获得积分10
刚刚
陆肆柒发布了新的文献求助10
1秒前
youyou完成签到,获得积分10
1秒前
橙子完成签到,获得积分10
1秒前
消失的多巴胺完成签到,获得积分10
2秒前
Dogtor发布了新的文献求助10
2秒前
标致碧曼发布了新的文献求助10
2秒前
哈哈哈完成签到,获得积分10
3秒前
3秒前
核桃发布了新的文献求助20
3秒前
4秒前
wanci应助jasmine采纳,获得10
5秒前
5秒前
6秒前
奶酪战神发布了新的文献求助10
7秒前
7秒前
amor发布了新的文献求助10
8秒前
科研通AI5应助标致碧曼采纳,获得10
8秒前
简单代双完成签到,获得积分10
9秒前
七页禾发布了新的文献求助10
9秒前
wanci应助Hanqi采纳,获得10
9秒前
10秒前
12秒前
眼睛大鹤完成签到,获得积分20
12秒前
QiuYue应助nn采纳,获得100
12秒前
顾矜应助姜宇航采纳,获得10
13秒前
漂亮的雁露完成签到,获得积分10
14秒前
Chaos发布了新的文献求助10
14秒前
Jasper应助yii采纳,获得10
15秒前
17秒前
18秒前
yilu完成签到 ,获得积分10
19秒前
19秒前
tushan发布了新的文献求助30
21秒前
王博发布了新的文献求助20
21秒前
21秒前
22秒前
善学以致用应助Chaos采纳,获得10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208359
求助须知:如何正确求助?哪些是违规求助? 4385928
关于积分的说明 13659138
捐赠科研通 4244820
什么是DOI,文献DOI怎么找? 2328952
邀请新用户注册赠送积分活动 1326741
关于科研通互助平台的介绍 1278980