LiConvFormer: A lightweight fault diagnosis framework using separable multiscale convolution and broadcast self-attention

计算机科学 稳健性(进化) 卷积神经网络 卷积(计算机科学) 计算机工程 人工智能 特征提取 分布式计算 嵌入式系统 人工神经网络 生物化学 基因 化学
作者
Shen Yan,Haidong Shao,Jie Wang,Xinyu Zheng,Bin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121338-121338 被引量:28
标识
DOI:10.1016/j.eswa.2023.121338
摘要

In recent studies, Transformer collaborated with convolution neural network (CNN) have made certain progress in the field of intelligent fault diagnosis by leveraging their respective advantages of global and local feature extraction. However, the multihead self-attention block used by Transformer and cross-channel convolution mechanism existing in CNN would make the collaborative models overly complex, leading to higher hardware requirements and limited industrial application scenarios. Therefore, this paper proposes a lightweight fault diagnosis framework called LiConvFormer to address the aforementioned challenges. First, a separable multiscale convolution block is designed to extract multilocal receptive field features of vibration signals and greatly reduce the learning parameters and computations. Second, a broadcast self-attention block is developed to capture critical fine-grained features within the signal's global scope, while avoiding cumbersome operations such as matrix multiplication and multidimensional exponentiation. Experimental results on three mechanical systems show that the proposed framework can accommodate advantages of lightweight and robustness compared to the recent Transformer and CNN-based fault diagnosis methods; moreover, the superiority of the above two blocks is also verified. The code library is available at: https://github.com/yanshen0210/LiConvFormer-a-lightweight-fault-diagnosis-framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ciooli发布了新的文献求助30
刚刚
刚刚
peace and love完成签到,获得积分10
1秒前
1秒前
2秒前
可爱的人雄关注了科研通微信公众号
2秒前
小猪啵比发布了新的文献求助10
2秒前
陶醉雨兰完成签到,获得积分10
2秒前
小蘑菇应助松鼠15111采纳,获得10
2秒前
3秒前
3秒前
面向杂志编论文应助Mircale采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
星辰大海应助生科爱好者采纳,获得10
3秒前
Lachs完成签到,获得积分10
4秒前
善学以致用应助机灵海云采纳,获得10
5秒前
无限的慕凝完成签到,获得积分10
5秒前
大胆的凡儿完成签到,获得积分10
6秒前
6秒前
雪碧没气完成签到,获得积分10
7秒前
7秒前
细腻匪完成签到,获得积分10
7秒前
大模型应助踏实冰棍采纳,获得10
7秒前
8秒前
asthedeer完成签到,获得积分10
8秒前
9秒前
九姑娘完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
orixero应助peace and love采纳,获得10
10秒前
今后应助JackFan采纳,获得10
10秒前
Tik完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
10秒前
淡淡花香完成签到,获得积分10
11秒前
脑洞疼应助天际繁星采纳,获得10
11秒前
12秒前
moomomomomo发布了新的文献求助10
12秒前
柳听白完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655