Attracting solvers' participation in crowdsourcing contests: The role of linguistic signals in task descriptions

众包 任务(项目管理) 具体性 计算机科学 认知心理学 解算器 自然语言处理 心理学 社会心理学 数据科学 万维网 工程类 系统工程 程序设计语言
作者
Shuang Wu,Qian Liu,Xin Zhao,Baowen Sun,Xiuwu Liao
出处
期刊:Information Systems Journal [Wiley]
卷期号:34 (1): 6-38 被引量:5
标识
DOI:10.1111/isj.12462
摘要

Abstract Many companies gain external expertise, lower their costs and generate publicity by using crowdsourcing platforms to complete tasks by leveraging the power of the crowd. However, the number of solvers attracted by crowdsourcing tasks varies widely. Although some well‐known crowdsourcing contests have attracted large numbers of participants, many tasks still suffer from low participation rates. Prior research aimed at solving this problem has focused on factors such as task rewards and durations while overlooking whether a well‐written description might motivate solvers to choose a task. Based on signalling theory, this study investigates the effect of task descriptions on solvers' participation by focusing on informational and affective linguistic signals. Our model is validated by analysing 13 929 descriptions posted in single‐winner tasks on epwk.com , a Chinese competitive crowdsourcing platform. For informational linguistic signals, the results reveal that there are inverted U‐shaped relationships between both concreteness and specificity and solver participation, whereas linguistic accuracy has a positive effect on solver participation. For affective linguistic signals, positive emotional words have a positive relationship with solver participation, whereas negative emotional words have the opposite effect. Theoretical and practical implications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发酱完成签到,获得积分10
2秒前
dxh发布了新的文献求助10
2秒前
bkagyin应助发三篇SCI采纳,获得30
2秒前
gggghhhh完成签到 ,获得积分20
3秒前
滴滴滴完成签到,获得积分10
4秒前
稻草人完成签到 ,获得积分10
5秒前
Umwandlung完成签到,获得积分10
6秒前
FashionBoy应助byecslx采纳,获得10
9秒前
1056720198完成签到 ,获得积分20
12秒前
13秒前
Singularity应助香山叶正红采纳,获得10
13秒前
希望天下0贩的0应助chant采纳,获得10
13秒前
Lucas应助dxh采纳,获得10
14秒前
混子完成签到,获得积分10
16秒前
小蘑菇应助舒心的南珍采纳,获得10
16秒前
Fred Guan应助kgdzj采纳,获得10
17秒前
呆呆发布了新的文献求助10
19秒前
发三篇SCI完成签到 ,获得积分20
20秒前
Owen应助花花采纳,获得10
23秒前
24秒前
meisisi发布了新的文献求助20
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得30
25秒前
赘婿应助科研通管家采纳,获得10
26秒前
Singularity应助科研通管家采纳,获得30
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
FashionBoy应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
99岁扶墙对抗完成签到,获得积分10
27秒前
28秒前
周日不上发条完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079