过电位
化学
介孔材料
枝晶(数学)
电化学
电子转移
微尺度化学
阳极
纳米技术
分离器(采油)
化学工程
电极
材料科学
物理化学
有机化学
催化作用
物理
几何学
数学
工程类
数学教育
热力学
作者
Fanxing Bu,Zhihao Sun,Wanhai Zhou,Yanyan Zhang,Yongjin Chen,Bing Ma,Xiaoxu Liu,Pei Liang,Chenglin Zhong,Ruizheng Zhao,Hongpeng Li,Lipeng Wang,Tengsheng Zhang,Boya Wang,Zaiwang Zhao,Jie Zhang,Wei Li,Yasseen S. Ibrahim,Yasser A. Hassan,Ahmed A. Elzatahry,Dongliang Chao,Dongyuan Zhao
摘要
Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI