结肠炎
氧化应激
炎症
内科学
下调和上调
体内
内分泌学
骨化三醇受体
维生素D与神经学
医学
生物
免疫学
生物化学
生物技术
基因
作者
Hong‐Qian Wang,Mengxue Zhao,Shaocheng Hong,Xue He,Tao Li,Cheng-Cheng Tong,Jing Guan,De‐Xiang Xu,Xi Chen
标识
DOI:10.1016/j.intimp.2023.111131
摘要
Previous study found that supplements with active vitamin D3 alleviated experimental colitis. The objective of this study was to investigate the possible role of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a ketone synthase, on vitamin D3 protecting against experimental colitis. HMGCS2 and vitamin D receptor (VDR) were measured in UC patients. The effects of vitamin D deficiency (VDD) and exogenous 1,25(OH)2D3 supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. DSS-induced oxidative stress and inflammation were analyzed in HT-29 cells. HMGCS2 was detected in 1,25(OH)2D3-pretreated HT-29 cells and mouse intestines. HMGCS2 was silenced to investigate the role of HMGCS2 in 1,25(OH)2D3 protecting against experimental colitis. Intestinal HMGCS2 downregulation was positively correlated with VDR reduction in UC patients. The in vivo experiments showed that VDD exacerbated DSS-induced colitis. By contrast, 1,25(OH)2D3 supplementation ameliorated DSS-induced colon damage, oxidative stress and inflammation. HMGCS2 was up-regulated after 1,25(OH)2D3 supplementation both in vivo and in vitro. Transfection with HMGCS2-siRNA inhibited antioxidant and anti-inflammatory effects of 1,25(OH)2D3 in DSS-treated HT-29 cells. 1,25(OH)2D3 supplementation up-regulates HMGCS2, which is responsible for 1,25(OH)2D3-mediated protection against oxidative stress and inflammation in DSS-induced colitis. These findings provide a potential therapeutic strategy for alleviating colitis-associated oxidative stress and inflammation.
科研通智能强力驱动
Strongly Powered by AbleSci AI