On Regularizing Multiple Clusterings for Ensemble Clustering by Graph Tensor Learning

聚类分析 张量(固有定义) 集成学习 计算机科学 模式识别(心理学) 数学 人工智能 理论计算机科学 纯数学
作者
Man-Sheng Chen,Jiaqi Lin,Chang‐Dong Wang,Wu-Dong Xi,Dong Huang
标识
DOI:10.1145/3581783.3612313
摘要

Ensemble clustering has shown its promising ability in fusing multiple base clusterings into a probably better and more robust clustering result. Typically, the co-association matrix based ensemble clustering methods attempt to integrate multiple connective matrices from base clusterings by weighted fusion to acquire a common graph representation. However, few of them are aware of the potential noise or corruption from the common representation by direct integration of different connective matrices with distinct cluster structures, and further consider the mutual information propagation between the input observations. In this paper, we propose a Graph Tensor Learning based Ensemble Clustering (GTLEC) method to refine multiple connective matrices by the substantial rank recovery and graph tensor learning. Within this framework, each input connective matrix is dexterously refined to approximate a graph structure by obeying the theoretical rank constraint with an adaptive weight coefficient. Further, we stack multiple refined connective matrices into a three-order tensor to extract their higher-order similarities via graph tensor learning, where the mutual information propagation across different graph matrices will also be promoted. Extensive experiments on several challenging datasets have confirmed the superiority of GTLEC compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡发布了新的文献求助10
2秒前
个性的雪旋完成签到 ,获得积分10
2秒前
完美世界应助老阳采纳,获得10
2秒前
梦里吃早饭完成签到,获得积分10
2秒前
健康的小松鼠完成签到,获得积分10
3秒前
4秒前
4秒前
怕孤独的绮南完成签到,获得积分20
4秒前
5秒前
研友_ZGDEG8完成签到,获得积分10
7秒前
壮观的惋庭完成签到 ,获得积分20
8秒前
大个应助细腻的谷秋采纳,获得10
9秒前
10秒前
mzhnx发布了新的文献求助30
10秒前
少女徐必成完成签到 ,获得积分10
11秒前
英俊的铭应助wsb76采纳,获得10
12秒前
12秒前
yalin完成签到,获得积分10
13秒前
14秒前
斯文败类应助czc采纳,获得10
14秒前
在水一方应助梦里吃早饭采纳,获得10
14秒前
16秒前
Phalloidin发布了新的文献求助10
16秒前
梅子完成签到 ,获得积分10
16秒前
华仔应助忆梦采纳,获得10
17秒前
科目三应助嘎嘎嘎嘎采纳,获得50
18秒前
tutulucky发布了新的文献求助30
19秒前
老阳发布了新的文献求助10
19秒前
19秒前
zhangshan完成签到,获得积分10
20秒前
华仔应助叫我魔王大人采纳,获得10
21秒前
akun完成签到,获得积分10
21秒前
22秒前
修狗狗完成签到,获得积分10
23秒前
jackynl发布了新的文献求助10
23秒前
AXEDW完成签到,获得积分10
24秒前
24秒前
akun发布了新的文献求助10
27秒前
28秒前
默默地读文献应助12345678采纳,获得20
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882