A review on brain age prediction models

神经影像学 白质 脑老化 灰质 衰老的大脑 大脑活动与冥想 心理学 大脑大小 神经科学 医学 脑电图 认知 磁共振成像 放射科
作者
L.K. Soumya Kumari,R. Sundarrajan
出处
期刊:Brain Research [Elsevier]
卷期号:1823: 148668-148668 被引量:12
标识
DOI:10.1016/j.brainres.2023.148668
摘要

Brain age in neuroimaging has emerged over the last decade and reflects the estimated age based on the brain MRI scan from a person. As a person ages, their brain structure will change, and these changes will be exclusive to males and females and will differ for each. White matter and grey matter density have a deeper relationship with brain aging. Hence, if the white matter and grey matter concentrations vary, the rate at which the brain ages will also vary. Neurodegenerative illnesses can be detected using the biomarker known as brain age. The development of deep learning has made it possible to analyze structural neuroimaging data in new ways, notably by predicting brain ages. We introduce the techniques and possible therapeutic uses of brain age prediction in this cutting-edge review. Creating a machine learning regression model to analyze age-related changes in brain structure among healthy individuals is a typical procedure in studies focused on brain aging. Subsequently, this model is employed to forecast the aging of brains in new individuals. The concept of the "brain-age gap" refers to the difference between an individual's predicted brain age and their actual chronological age. This score may serve as a gauge of the general state of the brain's health while also reflecting neuroanatomical disorders. It may help differential diagnosis, prognosis, and therapy decisions as well as early identification of brain-based illnesses. The following is a summary of the many forecasting techniques utilized over the past 11 years to estimate brain age. The study's conundrums and potential outcomes of the brain age predicted by current models will both be covered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
4秒前
Rollei完成签到,获得积分10
5秒前
ding应助guzhiwen采纳,获得10
5秒前
谷粱夏柳发布了新的文献求助10
6秒前
6秒前
ding应助wanna采纳,获得10
7秒前
vivi发布了新的文献求助10
8秒前
optimist发布了新的文献求助10
8秒前
乐乐应助li采纳,获得50
8秒前
11秒前
Buster完成签到,获得积分10
12秒前
恰同学少年完成签到,获得积分10
12秒前
13秒前
14秒前
Joel发布了新的文献求助10
14秒前
guzhiwen完成签到,获得积分10
14秒前
CodeCraft应助yangya采纳,获得10
14秒前
油油1123发布了新的文献求助10
15秒前
16秒前
Spongeisla完成签到,获得积分10
18秒前
18秒前
20秒前
liike发布了新的文献求助30
20秒前
满意的伊发布了新的文献求助10
21秒前
白什么冰完成签到 ,获得积分10
22秒前
frap完成签到,获得积分0
23秒前
合适凝雁完成签到,获得积分10
25秒前
26秒前
FashionBoy应助暴躁的信封采纳,获得10
26秒前
xiaohong发布了新的文献求助10
28秒前
28秒前
29秒前
shirley发布了新的文献求助10
30秒前
31秒前
31秒前
nana完成签到,获得积分10
31秒前
32秒前
wanna发布了新的文献求助10
32秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
Manufacturing Consent: Changes in the Labor Process under Monopoly Capitalism 500
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383200
求助须知:如何正确求助?哪些是违规求助? 2997517
关于积分的说明 8775075
捐赠科研通 2683078
什么是DOI,文献DOI怎么找? 1469487
科研通“疑难数据库(出版商)”最低求助积分说明 679411
邀请新用户注册赠送积分活动 671646