已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rational design of reverse osmosis membranes for boron removal: A counter-intuitive relationship between boron rejection and pore size

硼酸 反渗透 渗透 化学工程 吸附 化学 正渗透 合理设计 材料科学 纳米技术 有机化学 生物化学 工程类
作者
Qiang Lyu,Li‐Chiang Lin
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:331: 125699-125699 被引量:9
标识
DOI:10.1016/j.seppur.2023.125699
摘要

Owing to the toxicity of excess boron, developing reverse osmosis membranes that are capable of effectively removing boric acid, a boron specie commonly exists in seawater, is critical to advance water purification technology. To date, design principles of reverse osmosis membranes for boron removal have not yet been systematically explored. Using nanoporous graphene as a model system and by employing state-of-the-art molecular simulation techniques, this study discovers the critical role of the adsorptive competition of boric acid against water in the nanopores of membranes in their design. Specifically, the preferential adsorption of water onto the pore rims can be exploited to impede the permeation of boric acid, facilitating the size-exclusion effect for much improved boron rejection. Moreover, a well-balanced adsorptive competition is desired; water adsorption should not be too strong so that efficient water permeation can still be preserved. This results in membranes that are not only highly permeable but also capable of effectively removing boric acid. Detailed investigations on energetic, dynamics, and spatial distribution of water and boric acid as well as their free energy landscapes are also conducted for better understandings. Moreover, bilayer nanoporous graphene membranes with a heterogeneous design are identified to effectively block both boric acid and salt with a decent water permeation. Overall, the outcomes achieved herein can fundamentally guide the rational design of RO membranes for more efficient and effective boron removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEIWEI完成签到,获得积分10
3秒前
4秒前
5秒前
武勇发布了新的文献求助10
11秒前
昌昌昌完成签到 ,获得积分10
12秒前
adgcxvjj完成签到,获得积分10
14秒前
猛男完成签到,获得积分10
15秒前
wzh19940205完成签到,获得积分10
18秒前
霁星河完成签到,获得积分10
18秒前
爽朗雨后风完成签到,获得积分10
24秒前
搜集达人应助聪慧水池采纳,获得10
26秒前
29秒前
好想被风刮走完成签到,获得积分10
32秒前
32秒前
34秒前
温颂发布了新的文献求助10
34秒前
Ava应助1111sss采纳,获得10
37秒前
wen应助金枪鱼子采纳,获得10
38秒前
子车茗应助金枪鱼子采纳,获得30
38秒前
GGGGEEEE完成签到,获得积分10
41秒前
云一发布了新的文献求助10
41秒前
43秒前
46秒前
ZYY完成签到,获得积分10
46秒前
田様应助wowwyw采纳,获得10
48秒前
英姑应助云一采纳,获得10
50秒前
1111sss发布了新的文献求助10
52秒前
迅速的易巧完成签到 ,获得积分10
53秒前
可靠的寒风完成签到,获得积分10
53秒前
崇林同学完成签到 ,获得积分10
57秒前
紫薯球完成签到,获得积分10
57秒前
57秒前
慷慨大方完成签到,获得积分10
1分钟前
随性完成签到 ,获得积分10
1分钟前
研友_8R7JVL发布了新的文献求助10
1分钟前
云一完成签到,获得积分10
1分钟前
阿俊1212完成签到,获得积分10
1分钟前
1分钟前
跳跃毒娘发布了新的文献求助100
1分钟前
qqq完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802