A data-driven operating improvement method for the thermal power unit with frequent load changes

计算机科学 水准点(测量) 支持向量机 均方误差 数据挖掘 平均绝对百分比误差 线性回归 聚类分析 人工神经网络 特征选择 回归 数据点 回归分析 机器学习 统计 人工智能 数学 地理 大地测量学
作者
Jian Zhong Zhou,Lizhong Zhang,Zhu Li,Wei Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:354: 122195-122195
标识
DOI:10.1016/j.apenergy.2023.122195
摘要

In the near and medium term, thermal power generation will still play an important peak-shaving role in providing grid connection to volatile renewable energy. Thermal power units need to adjust from the current load to the given load within a given time period, which provides space for operational improvement. In this paper, we propose an operating improvement method for the thermal power unit based on real-time monitoring data by observation dividing, feature construction and selection, clustering, and machine learning. The unit operation data is categorized into three feature subsets based on domain knowledge, which is used to distinguish different functions of historical data. Subsequently, the optimal feature subset and observations are selected for building regression models, including linear regression (LR), ensemble tree regression (ETR), neural network regression (NNR), and support vector regression (SVR). R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE) are adopted to test the performance of the proposed regression model on the real-time monitoring data of a thermal unit, which has 80,000 observations of 36 different variables. Compared with benchmark methods, the proposed method has lower regression error in the numerical experiment. Thus, we can thereby improve the efficiency of operational management based on the built learning model. Furthermore, in response to peak shaving requirements, the proposed method in this article considers operational optimization over time periods containing multiple time points compared to the traditional operational optimization perspective. With the continuous arrival of monitoring data, the above method can be updated in a timely manner based on the new database to address model adjustments caused by unit aging and other factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿光完成签到,获得积分10
1秒前
seungmin发布了新的文献求助10
2秒前
威武语儿完成签到,获得积分10
2秒前
2秒前
hahaha123213123完成签到,获得积分20
4秒前
大鱼发布了新的文献求助20
4秒前
隐形曼青应助HS采纳,获得10
5秒前
su发布了新的文献求助10
5秒前
J_完成签到,获得积分10
7秒前
FashionBoy应助ZQ采纳,获得30
8秒前
Jasper应助慈祥的惜天采纳,获得10
8秒前
9秒前
袁小圆发布了新的文献求助10
9秒前
Liangyu完成签到,获得积分10
9秒前
搜集达人应助txs采纳,获得10
10秒前
13秒前
喵酱发布了新的文献求助10
13秒前
HS完成签到,获得积分20
14秒前
cccr02完成签到 ,获得积分10
15秒前
狼主发布了新的文献求助10
15秒前
axuan完成签到,获得积分10
15秒前
啦啦啦完成签到,获得积分10
17秒前
HS发布了新的文献求助10
17秒前
17秒前
萧水白应助冷静战斗机采纳,获得10
18秒前
田様应助猴子魏采纳,获得10
18秒前
20秒前
J_发布了新的文献求助10
20秒前
20秒前
善学以致用应助su采纳,获得10
22秒前
zhi发布了新的文献求助10
22秒前
Goodenough完成签到 ,获得积分10
22秒前
23秒前
优雅的沛春完成签到 ,获得积分10
24秒前
24秒前
Liangyu关注了科研通微信公众号
25秒前
25秒前
yuan完成签到,获得积分10
26秒前
东曦完成签到,获得积分20
26秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867202
关于积分的说明 8155265
捐赠科研通 2534052
什么是DOI,文献DOI怎么找? 1366768
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617880