A data-driven operating improvement method for the thermal power unit with frequent load changes

计算机科学 水准点(测量) 支持向量机 均方误差 数据挖掘 平均绝对百分比误差 线性回归 聚类分析 人工神经网络 特征选择 回归 数据点 回归分析 机器学习 统计 人工智能 数学 大地测量学 地理
作者
Jian Zhong Zhou,Lizhong Zhang,Zhu Li,Wei Zhang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:354: 122195-122195
标识
DOI:10.1016/j.apenergy.2023.122195
摘要

In the near and medium term, thermal power generation will still play an important peak-shaving role in providing grid connection to volatile renewable energy. Thermal power units need to adjust from the current load to the given load within a given time period, which provides space for operational improvement. In this paper, we propose an operating improvement method for the thermal power unit based on real-time monitoring data by observation dividing, feature construction and selection, clustering, and machine learning. The unit operation data is categorized into three feature subsets based on domain knowledge, which is used to distinguish different functions of historical data. Subsequently, the optimal feature subset and observations are selected for building regression models, including linear regression (LR), ensemble tree regression (ETR), neural network regression (NNR), and support vector regression (SVR). R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE) are adopted to test the performance of the proposed regression model on the real-time monitoring data of a thermal unit, which has 80,000 observations of 36 different variables. Compared with benchmark methods, the proposed method has lower regression error in the numerical experiment. Thus, we can thereby improve the efficiency of operational management based on the built learning model. Furthermore, in response to peak shaving requirements, the proposed method in this article considers operational optimization over time periods containing multiple time points compared to the traditional operational optimization perspective. With the continuous arrival of monitoring data, the above method can be updated in a timely manner based on the new database to address model adjustments caused by unit aging and other factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pppprrrrrrr发布了新的文献求助20
刚刚
MJX完成签到,获得积分10
1秒前
安娜给安娜的求助进行了留言
1秒前
998877剑指发布了新的文献求助10
2秒前
2秒前
bkagyin应助houcheng采纳,获得10
4秒前
ww发布了新的文献求助10
6秒前
2799完成签到,获得积分10
7秒前
香蕉鸽子发布了新的文献求助20
14秒前
houcheng完成签到,获得积分10
14秒前
shushu完成签到,获得积分10
15秒前
15秒前
17秒前
xzy998应助mm采纳,获得10
17秒前
an完成签到,获得积分10
24秒前
ll发布了新的文献求助10
24秒前
25秒前
思源应助bibabiu采纳,获得10
25秒前
Zurlliant完成签到,获得积分10
27秒前
30秒前
31秒前
32秒前
肉丸完成签到 ,获得积分10
32秒前
科目三应助ll采纳,获得10
33秒前
33秒前
种下梧桐树关注了科研通微信公众号
34秒前
35秒前
翻斗花园612完成签到,获得积分10
35秒前
666应助鱼咬羊采纳,获得10
36秒前
医痞子发布了新的文献求助10
36秒前
现代的雪糕完成签到,获得积分10
37秒前
xiaoyu完成签到,获得积分10
37秒前
shj发布了新的文献求助10
38秒前
40秒前
冷酷的魂幽完成签到,获得积分10
42秒前
折耳根完成签到 ,获得积分10
43秒前
田様应助axin采纳,获得10
44秒前
牛牛眉目发布了新的文献求助10
45秒前
小蘑菇应助shj采纳,获得10
47秒前
找文献啊找文献应助离枝采纳,获得30
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374