A data-driven operating improvement method for the thermal power unit with frequent load changes

计算机科学 水准点(测量) 支持向量机 均方误差 数据挖掘 平均绝对百分比误差 线性回归 聚类分析 人工神经网络 特征选择 回归 数据点 回归分析 机器学习 统计 人工智能 数学 大地测量学 地理
作者
Jian Zhong Zhou,Lizhong Zhang,Zhu Li,Wei Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:354: 122195-122195
标识
DOI:10.1016/j.apenergy.2023.122195
摘要

In the near and medium term, thermal power generation will still play an important peak-shaving role in providing grid connection to volatile renewable energy. Thermal power units need to adjust from the current load to the given load within a given time period, which provides space for operational improvement. In this paper, we propose an operating improvement method for the thermal power unit based on real-time monitoring data by observation dividing, feature construction and selection, clustering, and machine learning. The unit operation data is categorized into three feature subsets based on domain knowledge, which is used to distinguish different functions of historical data. Subsequently, the optimal feature subset and observations are selected for building regression models, including linear regression (LR), ensemble tree regression (ETR), neural network regression (NNR), and support vector regression (SVR). R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE) are adopted to test the performance of the proposed regression model on the real-time monitoring data of a thermal unit, which has 80,000 observations of 36 different variables. Compared with benchmark methods, the proposed method has lower regression error in the numerical experiment. Thus, we can thereby improve the efficiency of operational management based on the built learning model. Furthermore, in response to peak shaving requirements, the proposed method in this article considers operational optimization over time periods containing multiple time points compared to the traditional operational optimization perspective. With the continuous arrival of monitoring data, the above method can be updated in a timely manner based on the new database to address model adjustments caused by unit aging and other factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槿言完成签到 ,获得积分10
3秒前
秋殤完成签到 ,获得积分10
4秒前
5秒前
害怕的冰颜完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
儒雅的蜜粉完成签到,获得积分10
9秒前
缥缈的闭月完成签到,获得积分10
9秒前
永不言弃完成签到 ,获得积分10
10秒前
djbj2022发布了新的文献求助10
10秒前
一心完成签到,获得积分10
12秒前
WXyue完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
ATEVYG完成签到 ,获得积分10
17秒前
17秒前
犹豫的若完成签到,获得积分10
17秒前
Java完成签到,获得积分10
18秒前
坦率雪枫完成签到 ,获得积分10
18秒前
20秒前
rainchan0227完成签到,获得积分10
21秒前
风趣霆完成签到,获得积分10
24秒前
标致的泥猴桃完成签到,获得积分10
25秒前
落叶听风笑完成签到,获得积分10
25秒前
Kyle完成签到,获得积分10
25秒前
赧赧完成签到 ,获得积分10
27秒前
传奇3应助akanenn999采纳,获得10
33秒前
yar完成签到 ,获得积分10
34秒前
36秒前
沉静的清涟完成签到,获得积分10
39秒前
求助人员完成签到,获得积分10
39秒前
吕圆圆圆啊完成签到,获得积分10
41秒前
pp完成签到 ,获得积分10
42秒前
秋雨完成签到 ,获得积分10
42秒前
山东人在南京完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
43秒前
七QI完成签到 ,获得积分10
43秒前
AUGKING27完成签到 ,获得积分10
44秒前
jialin完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
英吉利25发布了新的文献求助10
49秒前
倩倩完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986