A data-driven operating improvement method for the thermal power unit with frequent load changes

计算机科学 水准点(测量) 支持向量机 均方误差 数据挖掘 平均绝对百分比误差 线性回归 聚类分析 人工神经网络 特征选择 回归 数据点 回归分析 机器学习 统计 人工智能 数学 地理 大地测量学
作者
Jian Zhong Zhou,Lizhong Zhang,Zhu Li,Wei Zhang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:354: 122195-122195
标识
DOI:10.1016/j.apenergy.2023.122195
摘要

In the near and medium term, thermal power generation will still play an important peak-shaving role in providing grid connection to volatile renewable energy. Thermal power units need to adjust from the current load to the given load within a given time period, which provides space for operational improvement. In this paper, we propose an operating improvement method for the thermal power unit based on real-time monitoring data by observation dividing, feature construction and selection, clustering, and machine learning. The unit operation data is categorized into three feature subsets based on domain knowledge, which is used to distinguish different functions of historical data. Subsequently, the optimal feature subset and observations are selected for building regression models, including linear regression (LR), ensemble tree regression (ETR), neural network regression (NNR), and support vector regression (SVR). R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE) are adopted to test the performance of the proposed regression model on the real-time monitoring data of a thermal unit, which has 80,000 observations of 36 different variables. Compared with benchmark methods, the proposed method has lower regression error in the numerical experiment. Thus, we can thereby improve the efficiency of operational management based on the built learning model. Furthermore, in response to peak shaving requirements, the proposed method in this article considers operational optimization over time periods containing multiple time points compared to the traditional operational optimization perspective. With the continuous arrival of monitoring data, the above method can be updated in a timely manner based on the new database to address model adjustments caused by unit aging and other factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助wowwyw采纳,获得10
刚刚
yihuiqing发布了新的文献求助10
2秒前
2秒前
2秒前
研友_Z3NGvn发布了新的文献求助10
4秒前
顾矜应助成就嘉人采纳,获得10
4秒前
布溜应助ddrose采纳,获得10
4秒前
田様应助千初采纳,获得10
4秒前
浮游应助祖国小红花采纳,获得10
5秒前
可爱的函函应助尘烟采纳,获得10
5秒前
好运来完成签到,获得积分10
6秒前
江江汪完成签到,获得积分10
6秒前
Thien发布了新的文献求助10
6秒前
6秒前
kikikiki完成签到,获得积分10
7秒前
科研通AI6应助LSW采纳,获得10
8秒前
希希发布了新的文献求助10
8秒前
SciGPT应助yc采纳,获得10
10秒前
LUO完成签到,获得积分20
10秒前
赵sir完成签到,获得积分20
11秒前
好运来发布了新的文献求助10
12秒前
14秒前
华仔应助科研小白采纳,获得10
15秒前
floraaa完成签到,获得积分10
15秒前
16秒前
浮游应助司阔林采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
lxz发布了新的文献求助10
20秒前
疯狂的刚完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
21秒前
rachell发布了新的文献求助10
21秒前
千初完成签到,获得积分10
23秒前
雨辰完成签到,获得积分10
23秒前
张继国发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005969
求助须知:如何正确求助?哪些是违规求助? 4249507
关于积分的说明 13241150
捐赠科研通 4049265
什么是DOI,文献DOI怎么找? 2215242
邀请新用户注册赠送积分活动 1225168
关于科研通互助平台的介绍 1145745