已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A data-driven operating improvement method for the thermal power unit with frequent load changes

计算机科学 水准点(测量) 支持向量机 均方误差 数据挖掘 平均绝对百分比误差 线性回归 聚类分析 人工神经网络 特征选择 回归 数据点 回归分析 机器学习 统计 人工智能 数学 大地测量学 地理
作者
Jian Zhong Zhou,Lizhong Zhang,Zhu Li,Wei Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:354: 122195-122195
标识
DOI:10.1016/j.apenergy.2023.122195
摘要

In the near and medium term, thermal power generation will still play an important peak-shaving role in providing grid connection to volatile renewable energy. Thermal power units need to adjust from the current load to the given load within a given time period, which provides space for operational improvement. In this paper, we propose an operating improvement method for the thermal power unit based on real-time monitoring data by observation dividing, feature construction and selection, clustering, and machine learning. The unit operation data is categorized into three feature subsets based on domain knowledge, which is used to distinguish different functions of historical data. Subsequently, the optimal feature subset and observations are selected for building regression models, including linear regression (LR), ensemble tree regression (ETR), neural network regression (NNR), and support vector regression (SVR). R-squared (R2), root mean square error (RMSE), and mean absolute error (MAE) are adopted to test the performance of the proposed regression model on the real-time monitoring data of a thermal unit, which has 80,000 observations of 36 different variables. Compared with benchmark methods, the proposed method has lower regression error in the numerical experiment. Thus, we can thereby improve the efficiency of operational management based on the built learning model. Furthermore, in response to peak shaving requirements, the proposed method in this article considers operational optimization over time periods containing multiple time points compared to the traditional operational optimization perspective. With the continuous arrival of monitoring data, the above method can be updated in a timely manner based on the new database to address model adjustments caused by unit aging and other factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlacy发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
冷静妙竹发布了新的文献求助20
3秒前
3秒前
ZY关闭了ZY文献求助
3秒前
5秒前
Criminology34应助科研通管家采纳,获得20
5秒前
Owen应助科研通管家采纳,获得20
5秒前
DL应助科研通管家采纳,获得10
5秒前
Tourist应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
6秒前
Tourist应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
王谨关注了科研通微信公众号
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
Magali应助风趣的映天采纳,获得30
7秒前
腈仙发布了新的文献求助10
7秒前
mxinm完成签到,获得积分10
7秒前
怕黑乌冬面完成签到 ,获得积分10
8秒前
8秒前
9秒前
Lucas应助ruby采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279