Diffusion Augmentation for Sequential Recommendation

计算机科学 推荐系统 序列(生物学) 任务(项目管理) 质量(理念) 噪音(视频) 编码(集合论) 偏爱 扩散 机器学习 人工智能 数据挖掘 情报检索 图像(数学) 哲学 经济 微观经济学 集合(抽象数据类型) 管理 程序设计语言 认识论 热力学 生物 物理 遗传学
作者
Qidong Liu,Yan Bin Fan,Xiangyu Zhao,Z. Z. Du,Huifeng Guo,Ruiming Tang,Feng Tian
标识
DOI:10.1145/3583780.3615134
摘要

Sequential recommendation (SRS) has become the technical foundation in many applications recently, which aims to recommend the next item based on the user's historical interactions. However, sequential recommendation often faces the problem of data sparsity, which widely exists in recommender systems. Besides, most users only interact with a few items, but existing SRS models often underperform these users. Such a problem, named the long-tail user problem, is still to be resolved. Data augmentation is a distinct way to alleviate these two problems, but they often need fabricated training strategies or are hindered by poor-quality generated interactions. To address these problems, we propose a Diffusion Augmentation for Sequential Recommendation (DiffuASR) for a higher quality generation. The augmented dataset by DiffuASR can be used to train the sequential recommendation models directly, free from complex training procedures. To make the best of the generation ability of the diffusion model, we first propose a diffusion-based pseudo sequence generation framework to fill the gap between image and sequence generation. Then, a sequential U-Net is designed to adapt the diffusion noise prediction model U-Net to the discrete sequence generation task. At last, we develop two guide strategies to assimilate the preference between generated and origin sequences. To validate the proposed DiffuASR, we conduct extensive experiments on three real-world datasets with three sequential recommendation models. The experimental results illustrate the effectiveness of DiffuASR. As far as we know, DiffuASR is one pioneer that introduce the diffusion model to the recommendation.The implementation code is available online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Joaquin完成签到 ,获得积分10
1秒前
野猴子boom发布了新的文献求助10
1秒前
Berthe完成签到 ,获得积分10
3秒前
深情安青应助纪道天采纳,获得10
4秒前
Xy发布了新的文献求助10
4秒前
Hello应助aventurine采纳,获得150
5秒前
Owen应助无情的宛儿采纳,获得10
5秒前
5秒前
6秒前
白色风车完成签到,获得积分10
6秒前
8秒前
Eliauk完成签到,获得积分10
8秒前
yznfly应助研友_ndka5L采纳,获得30
8秒前
Marilyn发布了新的文献求助10
9秒前
11秒前
我是老大应助文静的人雄采纳,获得10
11秒前
赘婿应助ST采纳,获得10
15秒前
Znn发布了新的文献求助10
15秒前
18秒前
充电宝应助lxy采纳,获得10
21秒前
aventurine发布了新的文献求助150
21秒前
22秒前
迹K完成签到,获得积分10
22秒前
22秒前
24秒前
24秒前
uikymh完成签到 ,获得积分0
25秒前
科研狗完成签到 ,获得积分10
26秒前
dahafei发布了新的文献求助10
27秒前
28秒前
ST发布了新的文献求助10
29秒前
iNk应助圆滚滚的水煮蛋采纳,获得20
32秒前
32秒前
滴滴滴完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
缓慢的秋莲完成签到,获得积分10
36秒前
Ava应助沈嘀嘀采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953182
求助须知:如何正确求助?哪些是违规求助? 3498499
关于积分的说明 11092349
捐赠科研通 3229100
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415