亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

F2BFE: development of feature-based building footprint extraction by remote sensing data and GEE

阈值 遥感 归一化差异植被指数 航天飞机雷达地形任务 足迹 计算机科学 人工智能 特征提取 特征(语言学) 数字高程模型 模式识别(心理学) 环境科学 地质学 图像(数学) 古生物学 哲学 气候变化 海洋学 语言学
作者
Hadi Farhadi,Hamid Ebadi,Abbas Kiani
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 5845-5875
标识
DOI:10.1080/01431161.2023.2255351
摘要

ABSTRACTMonitoring the spatiotemporal dynamics of building footprints (BF) is necessary for understanding urbanization growth. It is a difficult task to extract residential sites, mainly BF, because of the complexity of their makeup and spectral variety. Additionally, conventional methods for building mapping typically rely on abundant training data and expertise from human operates. This study presents a new unsupervised Feature-Based Building Footprint Extraction (F2BFE) strategy using Sentinel-1&2 satellite images and the SRTM Digital Elevation Model (DEM). The newly developed radar index (NRI) from Sentinel-1 images was utilized to extract the Primary Building Footprints (PBF) through histogram analysis and thresholding techniques, based on the mean of annual Sentinel-1 VV and VH Backscatter channels in the Ascending orbit. In this research, the integration of the Otsu and Unimodal thresholding technique was developed as an optimal thresholding method for feature extraction. Furthermore, Sentinel-2 images were applied to extract spectral indices related to vegetation (NDVI, GNDVI, RDVI indices), water (NDWI index), and residential/built-up (NDBI, BuEI). The qualitative and quantitative validation results indicate that the NRI-based BF map achieved higher Overall Accuracy (OA) values of 98.14%, 90%, and 91% in Region of Interest-1 (ROI-1), ROI-2, and ROI-3, respectively. Additionally, the Kappa Coefficients (KC) for these regions were 0.96, 0.97, and 0.85, respectively. The NRI index provides an excellent OA result when vegetation, water, and slope features are carefully eliminated. Finally, it can be inferred that the simultaneous use of the sentinel-1&2 and slope data in feature space leads to increased BF accuracy.KEYWORDS: Impervious Surfacesentinel-1&2optimal thresholdingspectral indexbuilt-upurban extraction Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementUpon a reasonable request, the corresponding author is willing to share the datasets analysed in this research.Authors contributionsHadi Farhadi: Introduction, material and method, visualization, data processing, result and discussion, original draft, formal analysis. Hamid Ebadi and Abbas Kiani: formal analysis, review & editing, supervision.Additional informationFundingThis study did not receive public or commercial funding agencies’ grants, funds, or other support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7_2U1发布了新的文献求助10
7秒前
7秒前
7_2U1完成签到,获得积分20
20秒前
27秒前
28秒前
Panther完成签到,获得积分10
32秒前
1分钟前
RE完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
paannqi完成签到,获得积分10
1分钟前
zone54188完成签到,获得积分10
1分钟前
1分钟前
Wa1Zh0u发布了新的文献求助30
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
liman发布了新的文献求助30
2分钟前
summer完成签到,获得积分10
2分钟前
噜噜完成签到,获得积分10
2分钟前
隐形曼青应助噜噜采纳,获得30
2分钟前
2分钟前
小珂完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
愿景发布了新的文献求助10
4分钟前
平常寄容发布了新的文献求助10
4分钟前
我是老大应助徐志豪采纳,获得10
4分钟前
平常寄容完成签到,获得积分20
4分钟前
Wa1Zh0u完成签到,获得积分20
5分钟前
bkagyin应助愿景采纳,获得10
5分钟前
5分钟前
归尘应助liman采纳,获得10
5分钟前
Twonej应助Wa1Zh0u采纳,获得30
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得30
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401