F2BFE: development of feature-based building footprint extraction by remote sensing data and GEE

阈值 遥感 归一化差异植被指数 航天飞机雷达地形任务 足迹 计算机科学 人工智能 特征提取 特征(语言学) 数字高程模型 模式识别(心理学) 环境科学 地质学 图像(数学) 古生物学 哲学 气候变化 海洋学 语言学
作者
Hadi Farhadi,Hamid Ebadi,Abbas Kiani
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 5845-5875
标识
DOI:10.1080/01431161.2023.2255351
摘要

ABSTRACTMonitoring the spatiotemporal dynamics of building footprints (BF) is necessary for understanding urbanization growth. It is a difficult task to extract residential sites, mainly BF, because of the complexity of their makeup and spectral variety. Additionally, conventional methods for building mapping typically rely on abundant training data and expertise from human operates. This study presents a new unsupervised Feature-Based Building Footprint Extraction (F2BFE) strategy using Sentinel-1&2 satellite images and the SRTM Digital Elevation Model (DEM). The newly developed radar index (NRI) from Sentinel-1 images was utilized to extract the Primary Building Footprints (PBF) through histogram analysis and thresholding techniques, based on the mean of annual Sentinel-1 VV and VH Backscatter channels in the Ascending orbit. In this research, the integration of the Otsu and Unimodal thresholding technique was developed as an optimal thresholding method for feature extraction. Furthermore, Sentinel-2 images were applied to extract spectral indices related to vegetation (NDVI, GNDVI, RDVI indices), water (NDWI index), and residential/built-up (NDBI, BuEI). The qualitative and quantitative validation results indicate that the NRI-based BF map achieved higher Overall Accuracy (OA) values of 98.14%, 90%, and 91% in Region of Interest-1 (ROI-1), ROI-2, and ROI-3, respectively. Additionally, the Kappa Coefficients (KC) for these regions were 0.96, 0.97, and 0.85, respectively. The NRI index provides an excellent OA result when vegetation, water, and slope features are carefully eliminated. Finally, it can be inferred that the simultaneous use of the sentinel-1&2 and slope data in feature space leads to increased BF accuracy.KEYWORDS: Impervious Surfacesentinel-1&2optimal thresholdingspectral indexbuilt-upurban extraction Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementUpon a reasonable request, the corresponding author is willing to share the datasets analysed in this research.Authors contributionsHadi Farhadi: Introduction, material and method, visualization, data processing, result and discussion, original draft, formal analysis. Hamid Ebadi and Abbas Kiani: formal analysis, review & editing, supervision.Additional informationFundingThis study did not receive public or commercial funding agencies’ grants, funds, or other support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun_Chen完成签到,获得积分10
1秒前
2秒前
flyfish完成签到,获得积分10
3秒前
3秒前
5秒前
与落完成签到,获得积分10
7秒前
kenna123发布了新的文献求助10
7秒前
zou发布了新的文献求助10
7秒前
ShengQ完成签到,获得积分10
9秒前
limbo完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
秋风细细雨完成签到 ,获得积分10
13秒前
kkkla发布了新的文献求助10
15秒前
15秒前
16秒前
20秒前
23秒前
Qiancheni完成签到,获得积分10
23秒前
starofjlu完成签到,获得积分10
23秒前
xyzlancet完成签到,获得积分10
24秒前
书签完成签到,获得积分10
26秒前
26秒前
第五元素完成签到,获得积分10
27秒前
kkkla完成签到,获得积分10
27秒前
28秒前
耍酷的丹珍完成签到,获得积分10
28秒前
123完成签到,获得积分20
29秒前
nil关闭了nil文献求助
29秒前
秋秋完成签到,获得积分10
30秒前
luo完成签到,获得积分10
31秒前
CodeCraft应助victorchen采纳,获得10
32秒前
temaxs完成签到 ,获得积分10
33秒前
33秒前
34秒前
完美世界应助594778089采纳,获得30
34秒前
干净的时光应助科研人采纳,获得20
37秒前
风趣安青发布了新的文献求助10
38秒前
DNAdamage发布了新的文献求助10
38秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198