F2BFE: development of feature-based building footprint extraction by remote sensing data and GEE

阈值 遥感 归一化差异植被指数 航天飞机雷达地形任务 足迹 计算机科学 人工智能 特征提取 特征(语言学) 数字高程模型 模式识别(心理学) 环境科学 地质学 图像(数学) 古生物学 哲学 气候变化 海洋学 语言学
作者
Hadi Farhadi,Hamid Ebadi,Abbas Kiani
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (19): 5845-5875
标识
DOI:10.1080/01431161.2023.2255351
摘要

ABSTRACTMonitoring the spatiotemporal dynamics of building footprints (BF) is necessary for understanding urbanization growth. It is a difficult task to extract residential sites, mainly BF, because of the complexity of their makeup and spectral variety. Additionally, conventional methods for building mapping typically rely on abundant training data and expertise from human operates. This study presents a new unsupervised Feature-Based Building Footprint Extraction (F2BFE) strategy using Sentinel-1&2 satellite images and the SRTM Digital Elevation Model (DEM). The newly developed radar index (NRI) from Sentinel-1 images was utilized to extract the Primary Building Footprints (PBF) through histogram analysis and thresholding techniques, based on the mean of annual Sentinel-1 VV and VH Backscatter channels in the Ascending orbit. In this research, the integration of the Otsu and Unimodal thresholding technique was developed as an optimal thresholding method for feature extraction. Furthermore, Sentinel-2 images were applied to extract spectral indices related to vegetation (NDVI, GNDVI, RDVI indices), water (NDWI index), and residential/built-up (NDBI, BuEI). The qualitative and quantitative validation results indicate that the NRI-based BF map achieved higher Overall Accuracy (OA) values of 98.14%, 90%, and 91% in Region of Interest-1 (ROI-1), ROI-2, and ROI-3, respectively. Additionally, the Kappa Coefficients (KC) for these regions were 0.96, 0.97, and 0.85, respectively. The NRI index provides an excellent OA result when vegetation, water, and slope features are carefully eliminated. Finally, it can be inferred that the simultaneous use of the sentinel-1&2 and slope data in feature space leads to increased BF accuracy.KEYWORDS: Impervious Surfacesentinel-1&2optimal thresholdingspectral indexbuilt-upurban extraction Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementUpon a reasonable request, the corresponding author is willing to share the datasets analysed in this research.Authors contributionsHadi Farhadi: Introduction, material and method, visualization, data processing, result and discussion, original draft, formal analysis. Hamid Ebadi and Abbas Kiani: formal analysis, review & editing, supervision.Additional informationFundingThis study did not receive public or commercial funding agencies’ grants, funds, or other support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuyu完成签到,获得积分10
刚刚
哈哈哈完成签到 ,获得积分10
刚刚
RosyBai发布了新的文献求助10
1秒前
1秒前
佳佳应助落后的盼秋采纳,获得10
2秒前
慧1111111发布了新的文献求助10
2秒前
5秒前
5秒前
thy完成签到,获得积分10
5秒前
orixero应助霸气的思柔采纳,获得10
5秒前
8秒前
LWJJNU完成签到 ,获得积分10
9秒前
10秒前
10秒前
SciGPT应助人青采纳,获得10
11秒前
11秒前
11秒前
风中鹤发布了新的文献求助10
12秒前
胡辣椒麻鸡完成签到,获得积分10
12秒前
12秒前
艺心发布了新的文献求助10
14秒前
ggun发布了新的文献求助10
14秒前
汤泽琪发布了新的文献求助10
14秒前
vlots应助醉熏的伊采纳,获得30
15秒前
许子健发布了新的文献求助10
16秒前
yiyimx发布了新的文献求助10
16秒前
16秒前
情怀应助清脆的雨泽采纳,获得10
18秒前
19秒前
ww007完成签到,获得积分10
20秒前
zht完成签到,获得积分10
20秒前
JHJ完成签到,获得积分10
21秒前
666应助夕荀采纳,获得10
23秒前
圈圈发布了新的文献求助20
24秒前
ggun完成签到,获得积分10
25秒前
水濑心源发布了新的文献求助10
27秒前
29秒前
赘婿应助洁净的静芙采纳,获得30
29秒前
搜集达人应助艺心采纳,获得10
29秒前
qwe发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388