亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

F2BFE: development of feature-based building footprint extraction by remote sensing data and GEE

阈值 遥感 归一化差异植被指数 航天飞机雷达地形任务 足迹 计算机科学 人工智能 特征提取 特征(语言学) 数字高程模型 模式识别(心理学) 环境科学 地质学 图像(数学) 古生物学 哲学 气候变化 海洋学 语言学
作者
Hadi Farhadi,Hamid Ebadi,Abbas Kiani
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (19): 5845-5875
标识
DOI:10.1080/01431161.2023.2255351
摘要

ABSTRACTMonitoring the spatiotemporal dynamics of building footprints (BF) is necessary for understanding urbanization growth. It is a difficult task to extract residential sites, mainly BF, because of the complexity of their makeup and spectral variety. Additionally, conventional methods for building mapping typically rely on abundant training data and expertise from human operates. This study presents a new unsupervised Feature-Based Building Footprint Extraction (F2BFE) strategy using Sentinel-1&2 satellite images and the SRTM Digital Elevation Model (DEM). The newly developed radar index (NRI) from Sentinel-1 images was utilized to extract the Primary Building Footprints (PBF) through histogram analysis and thresholding techniques, based on the mean of annual Sentinel-1 VV and VH Backscatter channels in the Ascending orbit. In this research, the integration of the Otsu and Unimodal thresholding technique was developed as an optimal thresholding method for feature extraction. Furthermore, Sentinel-2 images were applied to extract spectral indices related to vegetation (NDVI, GNDVI, RDVI indices), water (NDWI index), and residential/built-up (NDBI, BuEI). The qualitative and quantitative validation results indicate that the NRI-based BF map achieved higher Overall Accuracy (OA) values of 98.14%, 90%, and 91% in Region of Interest-1 (ROI-1), ROI-2, and ROI-3, respectively. Additionally, the Kappa Coefficients (KC) for these regions were 0.96, 0.97, and 0.85, respectively. The NRI index provides an excellent OA result when vegetation, water, and slope features are carefully eliminated. Finally, it can be inferred that the simultaneous use of the sentinel-1&2 and slope data in feature space leads to increased BF accuracy.KEYWORDS: Impervious Surfacesentinel-1&2optimal thresholdingspectral indexbuilt-upurban extraction Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementUpon a reasonable request, the corresponding author is willing to share the datasets analysed in this research.Authors contributionsHadi Farhadi: Introduction, material and method, visualization, data processing, result and discussion, original draft, formal analysis. Hamid Ebadi and Abbas Kiani: formal analysis, review & editing, supervision.Additional informationFundingThis study did not receive public or commercial funding agencies’ grants, funds, or other support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
10秒前
Jerry发布了新的文献求助10
15秒前
万能图书馆应助Jerry采纳,获得10
33秒前
48秒前
Ww完成签到,获得积分20
50秒前
风中的迎丝完成签到,获得积分10
50秒前
55秒前
wmz完成签到 ,获得积分10
58秒前
qc发布了新的文献求助10
1分钟前
1分钟前
pups发布了新的文献求助30
1分钟前
qc完成签到,获得积分20
1分钟前
李健应助ttt采纳,获得30
1分钟前
1分钟前
ttt发布了新的文献求助30
1分钟前
重庆森林完成签到,获得积分10
1分钟前
七月份的表完成签到 ,获得积分10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
HS完成签到,获得积分10
2分钟前
打打应助ttt采纳,获得10
2分钟前
haihaihai完成签到 ,获得积分10
3分钟前
ling发布了新的文献求助10
3分钟前
曦颜完成签到 ,获得积分10
3分钟前
3分钟前
www发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Jerry发布了新的文献求助10
3分钟前
COCO发布了新的文献求助10
3分钟前
www完成签到,获得积分10
3分钟前
独步出营完成签到 ,获得积分10
3分钟前
上官若男应助Jerry采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
COCO完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443