An Unsupervised Gradient-Based Approach for Real-Time Log Analysis From Distributed Systems

计算机科学 异常检测 人工智能 异常(物理) 人工神经网络 数据挖掘 精确性和召回率 无监督学习 边界判定 机器学习 支持向量机 深度学习 模式识别(心理学) 凝聚态物理 物理
作者
Minquan Wang,Siyang Lu,Sizhe Xiao,Dong Dong Wang,Xiang Wei,Ningning Han,Liqiang Wang
出处
期刊:International Journal of Cooperative Information Systems [World Scientific]
卷期号:33 (02)
标识
DOI:10.1142/s0218843023500181
摘要

We consider the problem of real-time log anomaly detection for distributed system with deep neural networks by unsupervised learning. There are two challenges in this problem, including detection accuracy and analysis efficacy. To tackle these two challenges, we propose GLAD, a simple yet effective approach mining for anomalies in distributed systems. To ensure detection accuracy, we exploit the gradient features in a well-calibrated deep neural network and analyze anomalous pattern within log files. To improve the analysis efficacy, we further integrate one-class support vector machine (SVM) into anomalous analysis, which significantly reduces the cost of anomaly decision boundary delineation. This effective integration successfully solves both accuracy and efficacy in real-time log anomaly detection. Also, since anomalous analysis is based upon unsupervised learning, it significantly reduces the extra data labeling cost. We conduct a series of experiments to justify that GLAD has the best comprehensive performance balanced between accuracy and efficiency, which implies the advantage in tackling practical problems. The results also reveal that GLAD enables effective anomaly mining and consistently outperforms state-of-the-art methods on both recall and F1 scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12ss发布了新的文献求助30
1秒前
pluto应助fiu~采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
拉尼娜发布了新的文献求助10
2秒前
11111完成签到,获得积分10
2秒前
慕青应助黄燕采纳,获得10
2秒前
2秒前
安静店员完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
花已烬发布了新的文献求助20
3秒前
3秒前
3秒前
温暖的萤发布了新的文献求助10
4秒前
超甜大西瓜完成签到,获得积分10
4秒前
无花果应助郑泽航采纳,获得10
5秒前
5秒前
杨沛发布了新的文献求助10
5秒前
5秒前
zhangxq发布了新的文献求助10
5秒前
研友_VZG7GZ应助冰苏打采纳,获得10
6秒前
ZL发布了新的文献求助10
6秒前
liurencun发布了新的文献求助10
6秒前
6秒前
6秒前
electromx发布了新的文献求助20
7秒前
高贵焦发布了新的文献求助10
7秒前
充电宝应助SYS采纳,获得10
7秒前
昼夜本色发布了新的文献求助10
7秒前
目光之澄发布了新的文献求助10
7秒前
7秒前
xiliii发布了新的文献求助10
7秒前
8秒前
yang666完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
大模型应助maybe豪采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807