An Unsupervised Gradient-Based Approach for Real-Time Log Analysis From Distributed Systems

计算机科学 异常检测 人工智能 异常(物理) 人工神经网络 数据挖掘 精确性和召回率 无监督学习 边界判定 机器学习 支持向量机 深度学习 模式识别(心理学) 凝聚态物理 物理
作者
Minquan Wang,Siyang Lu,Sizhe Xiao,Dong Dong Wang,Xiang Wei,Ningning Han,Liqiang Wang
出处
期刊:International Journal of Cooperative Information Systems [World Scientific]
卷期号:33 (02)
标识
DOI:10.1142/s0218843023500181
摘要

We consider the problem of real-time log anomaly detection for distributed system with deep neural networks by unsupervised learning. There are two challenges in this problem, including detection accuracy and analysis efficacy. To tackle these two challenges, we propose GLAD, a simple yet effective approach mining for anomalies in distributed systems. To ensure detection accuracy, we exploit the gradient features in a well-calibrated deep neural network and analyze anomalous pattern within log files. To improve the analysis efficacy, we further integrate one-class support vector machine (SVM) into anomalous analysis, which significantly reduces the cost of anomaly decision boundary delineation. This effective integration successfully solves both accuracy and efficacy in real-time log anomaly detection. Also, since anomalous analysis is based upon unsupervised learning, it significantly reduces the extra data labeling cost. We conduct a series of experiments to justify that GLAD has the best comprehensive performance balanced between accuracy and efficiency, which implies the advantage in tackling practical problems. The results also reveal that GLAD enables effective anomaly mining and consistently outperforms state-of-the-art methods on both recall and F1 scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助1111111采纳,获得10
1秒前
孤独傲松发布了新的文献求助10
2秒前
爱吃米线发布了新的文献求助10
3秒前
小白发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
淡淡萍完成签到,获得积分10
4秒前
5秒前
jackeylee99999完成签到,获得积分20
5秒前
Live应助科研通管家采纳,获得10
5秒前
wkjfh应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
6秒前
Live应助科研通管家采纳,获得10
6秒前
pcr163应助科研通管家采纳,获得300
6秒前
无花果应助科研通管家采纳,获得10
6秒前
wkjfh应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
Live应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
demonsnow应助科研通管家采纳,获得10
6秒前
wkjfh应助科研通管家采纳,获得10
6秒前
6秒前
闾丘剑封发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
我是老大应助HgPP采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
lunhui6453发布了新的文献求助10
9秒前
宝宝哎呀哦完成签到,获得积分10
10秒前
11秒前
ZCLIN发布了新的文献求助20
13秒前
15秒前
传统的书蝶完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895