(Invited) Application of Machine Learning in Carbon Nanotube-Based Biosensors

生物传感器 电导 材料科学 碳纳米管 纳米技术 场效应晶体管 分析物 灵敏度(控制系统) 晶体管 阈值电压 跨导 光电子学 电压 化学 电子工程 电气工程 物理 物理化学 工程类 凝聚态物理
作者
Alexander Star
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (9): 1142-1142
标识
DOI:10.1149/ma2023-0191142mtgabs
摘要

Among electrochemical sensors, electrolyte-gated field-effect transistor (FET) with semiconducting single-walled carbon nanotubes (SWCNTs) is one of the most promising choices for the ultrasensitive biosensors. The biosensing is typically based on the recognition of analytes with capture probes (antibody, aptamer, receptor, enzyme, etc.) attached to SWCNTs. While the capture probes improve the chemical sensitivity and selectivity, the stability of the nanotube-based biosensors is limited by the activity of the capture probes. Another approach involves sensor arrays with different metal nanoparticles/self-assembled monolayers on the SWCNTs that act as nonspecific receptors. These sensor arrays can be trained with machine learning algorithms to distinguish analytes. When analytes bind to the sensor surface and interact with the semiconducting SWCNTs, they can cause modulations of the number of charge carriers in the FET channel, changing the device conductance, and eventually result in change in the FET characteristics, i.e., measured source-drain current vs. applied gate voltage. Rich information regarding the biorecognition process, sensing mechanism and sensing performances can be extracted from the changes in FET transfer characteristics. We proposed 11 features that can be selected to accurately describe the changes in FET transfer curves, including (1) relative change in transconductance, (2) threshold voltage (V th ) shift, (3, 10) relative change in conductance at ±0.6 V g , (4-9) change in overall conductance normalized to conductance at V th , and (11) the relative change in minimum conductance (see figure below). The transfer characteristics were extracted as distinct features for model training using established machine learning algorithms. We fabricated SWCNT-FET array functionalized with gold nanoparticles and different self-assembled monolayers (dodecanethiol and lipoic acid) for the sensing of nonmalignant and malignant cells, which were classified by linear discriminant analysis. [1] We have also demonstrated that the SWCNT-FET sensor array could be used for the screening of cell behaviors, and that live/dead mouse B16 melanoma cells could be successfully classified with machine learning. [2] [1] Silva, G. O.; Michael, Z. P.; Bian, L.; Shurin, G. V.; Mulato, M.; Shurin, M. R.; Star, A., Nanoelectronic Discrimination of Nonmalignant and Malignant Cells Using Nanotube Field-Effect Transistors. ACS Sens. 2017, 2 , 1128–1132. [2] Liu, Z. R.; Shurin, G. V.; Bian, L.; White, D. L.; Shurin, M. R.; Star, A., A Carbon Nanotube Sensor Array for the Label-Free Discrimination of Live and Dead Cells with Machine Learning. Anal. Chem. 2022 , 94 , 3565-3573. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨好圆发布了新的文献求助10
刚刚
ZMY完成签到,获得积分20
刚刚
慕青应助崔小好采纳,获得30
1秒前
4秒前
5秒前
5秒前
8秒前
LXX完成签到,获得积分10
8秒前
提溜弹弹发布了新的文献求助10
8秒前
suliang完成签到,获得积分10
9秒前
孤独曲奇完成签到,获得积分10
9秒前
10秒前
龟龟完成签到 ,获得积分10
11秒前
12秒前
研友_Z3vemn发布了新的文献求助10
13秒前
god完成签到,获得积分20
13秒前
彭于晏应助廿久采纳,获得10
13秒前
ZMY发布了新的文献求助10
14秒前
Lilith完成签到 ,获得积分10
14秒前
JJJJJJJJJJJ完成签到,获得积分10
16秒前
god发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
Lilith发布了新的文献求助10
18秒前
20秒前
聪慧凡蕾完成签到,获得积分10
22秒前
饱满若灵完成签到,获得积分10
23秒前
朴实的纸飞机完成签到 ,获得积分10
23秒前
24秒前
24秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
sjdghgdhs发布了新的文献求助10
28秒前
囚徒完成签到 ,获得积分10
28秒前
29秒前
30秒前
简单代亦发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
32秒前
renj发布了新的文献求助10
35秒前
blueberry发布了新的文献求助10
36秒前
简单代亦完成签到,获得积分20
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659533
求助须知:如何正确求助?哪些是违规求助? 3221097
关于积分的说明 9739025
捐赠科研通 2930423
什么是DOI,文献DOI怎么找? 1604419
邀请新用户注册赠送积分活动 757275
科研通“疑难数据库(出版商)”最低求助积分说明 734315