Rail Surface Defect Detection Based on Improved UPerNet and Connected Component Analysis

计算机科学 杠杆(统计) 分割 人工智能 规范化(社会学) 像素 解析 变压器 模式识别(心理学) 数据挖掘 电压 物理 量子力学 社会学 人类学
作者
Yongzhi Min,Jiafeng Li,Yaxing Li
出处
期刊:Computers, materials & continua 卷期号:77 (1): 941-962 被引量:3
标识
DOI:10.32604/cmc.2023.041182
摘要

To guarantee the safety of railway operations, the swift detection of rail surface defects becomes imperative. Traditional methods of manual inspection and conventional nondestructive testing prove inefficient, especially when scaling to extensive railway networks. Moreover, the unpredictable and intricate nature of defect edge shapes further complicates detection efforts. Addressing these challenges, this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network (UPerNet) tailored for rail surface defect detection. Notably, the Swin Transformer Tiny version (Swin-T) network, underpinned by the Transformer architecture, is employed for adept feature extraction. This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference. The model’s efficiency is further amplified by the window-based self-attention, which minimizes the model’s parameter count. We implement the cross-GPU synchronized batch normalization (SyncBN) for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships. Experimental evaluations underscore the efficacy of our improved UPerNet, with results demonstrating Pixel Accuracy (PA) scores of 91.39% and 93.35%, Intersection over Union (IoU) values of 83.69% and 87.58%, Dice Coefficients of 91.12% and 93.38%, and Precision metrics of 90.85% and 93.41% across two distinct datasets. An increment in detection accuracy was discernible. For further practical applicability, we deploy semantic segmentation of rail surface defects, leveraging connected component processing techniques to distinguish varied defects within the same frame. By computing the actual defect length and area, our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling玲发布了新的文献求助10
刚刚
刚刚
傻鱼辣椒完成签到 ,获得积分10
1秒前
Li发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
Jiny发布了新的文献求助10
2秒前
缥缈的采文完成签到,获得积分10
2秒前
Hello应助aDou采纳,获得10
3秒前
斗破苍穹发布了新的文献求助10
3秒前
一只虎子发布了新的文献求助10
3秒前
Capper完成签到,获得积分10
4秒前
Mayer1234088完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
彭于晏应助znnnnnnnnnn采纳,获得10
5秒前
6秒前
curry发布了新的文献求助20
6秒前
无餍应助yy采纳,获得10
7秒前
7秒前
王小头要查文献完成签到,获得积分10
8秒前
狄骆发布了新的文献求助10
9秒前
9秒前
傲娇皮皮虾完成签到 ,获得积分10
10秒前
bingshuaizhao发布了新的文献求助10
10秒前
10秒前
10秒前
不安青牛应助123321采纳,获得30
10秒前
11秒前
ling玲完成签到,获得积分20
11秒前
11秒前
11秒前
hillbert完成签到,获得积分10
11秒前
12秒前
啦啦啦完成签到,获得积分10
13秒前
子彧完成签到,获得积分20
13秒前
久违完成签到,获得积分10
13秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474762
求助须知:如何正确求助?哪些是违规求助? 3066860
关于积分的说明 9101503
捐赠科研通 2758260
什么是DOI,文献DOI怎么找? 1513498
邀请新用户注册赠送积分活动 699576
科研通“疑难数据库(出版商)”最低求助积分说明 699031