Semi-supervised fuzzy clustering algorithm based on prior membership degree matrix with expert preference

学位(音乐) 聚类分析 模糊逻辑 基质(化学分析) 人工智能 模糊聚类 数据挖掘 度矩阵 数学 模式识别(心理学) 计算机科学 偏爱 统计 理论计算机科学 图形 物理 材料科学 折线图 声学 图形功率 复合材料
作者
Shengbing Xu,Zhifeng Hao,Yuanhao Zhu,Zhenyou Wang,Yingjie Xiao,Bo Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121812-121812
标识
DOI:10.1016/j.eswa.2023.121812
摘要

Existing pre-processing methods for the prior membership degree matrix suffer from the following issues: (1) The labeling constraints for prior membership degree matrix have an effect on the expert’s judgment on the prior membership degree, which easily causes the distortion problem of the prior membership degree labeling information; (2) There exists the problem of inconsistency between the filling information and the labeling information in the prior membership degree matrix to be filled in the missing values with zeros. To address these problems, we propose an unconstrained labeling idea for the prior membership degree matrix and the corresponding pre-processing method for the missing values by introducing the statistical characteristics of extreme value distribution and simultaneously apply it to the semi-supervised fuzzy clustering algorithm. More specifically, we focus on learning an expert preference value from the prior membership degree matrix and filling in the missing values with the expert preference value. Thus, we propose an unconstrained pre-processing method for the prior membership degree matrix by filling in missing values with an expert preference to keep the filling information consistent with the labeling information in the prior membership degree matrix as much as possible. In addition, we design a semi-supervised fuzzy clustering algorithm based on an unconstrained prior membership degree matrix with expert preference (SFCM-EP) by introducing the K-L divergence to improve the applicability, utility and running performance of semi-supervised fuzzy clustering algorithm. Our experimental results on the simulation dataset and the UCI datasets show the feasibility and effectiveness of the proposed pre-processing method of the prior membership degree matrix with encouraging results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
糟糕的霆完成签到 ,获得积分10
1秒前
婷婷发布了新的文献求助10
1秒前
1秒前
Anxinxin发布了新的文献求助10
1秒前
CipherSage应助xyz采纳,获得10
2秒前
2秒前
脑洞疼应助mjj采纳,获得10
2秒前
good关注了科研通微信公众号
3秒前
3秒前
punchline完成签到 ,获得积分10
3秒前
Ava应助April采纳,获得10
3秒前
苔原猫咪甜甜圈完成签到,获得积分10
4秒前
骑着蚂蚁追大象完成签到,获得积分10
4秒前
aaa发布了新的文献求助10
4秒前
4秒前
退堂鼓完成签到,获得积分20
4秒前
阿巴发布了新的文献求助10
4秒前
罗实发布了新的文献求助10
4秒前
愉快寄真完成签到,获得积分10
5秒前
5秒前
5秒前
tzy完成签到,获得积分10
6秒前
随聚随分完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
孟陬十一发布了新的文献求助20
7秒前
7秒前
最优解发布了新的文献求助50
7秒前
huanhuan完成签到,获得积分10
8秒前
阿金发布了新的文献求助10
8秒前
啱啱发布了新的文献求助10
9秒前
chenxin7271发布了新的文献求助10
9秒前
可乐完成签到,获得积分10
9秒前
benben发布了新的文献求助10
9秒前
壹拾柒发布了新的文献求助20
9秒前
桐桐应助无情的白桃采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762