PI3K/AKT/mTOR通路
穿心莲内酯
蛋白激酶B
血管平滑肌
生物
下调和上调
细胞生长
细胞生物学
信号转导
癌症研究
分子生物学
化学
生物化学
内分泌学
基因
平滑肌
作者
Juanjuan Han,Chunmei Tan,Yijing Pan,Chuang Qu,Zijun Wang,Shunshun Wang,Chunli Wang,Kang Xu
标识
DOI:10.1016/j.ejphar.2023.176082
摘要
Andrographolide (AGP) exerts pharmacological effects when used for the treatment of cardiovascular disease, but the molecular mechanisms underlying its inhibitory effects on the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal hyperplasia (IH) are unknown. The proliferation and migration of VSMCs treated with AGP were examined using the CCK-8, flow cytometry, and wound healing assays. Expression levels of proteins related to cell proliferation and apoptosis were quantified. Multi-omics analysis with RNA-seq and metabolome was used to explore the potential molecular mechanism of AGP treatment. Additionally, an in vivo model was established through ligation of the left common carotid artery to identify the therapeutic potential of AGP in IH. Molecular docking and western blotting were performed to verify the mechanism discovered with multi-omics analysis. The results showed that AGP inhibited the proliferation and migration of cultured VSMCs in a dose-dependent manner and alleviated IH-related vascular stenosis. AGP significantly downregulated the protein levels of CDK1, CCND1, and BCL2 and upregulated the protein level of BAX. Gene expression profiles showed a total of 3,298 differentially expressed genes (DEGs) after AGP treatment, of which 1,709 DEGs had upregulated expression and 1,589 DEGs had downregulated expression. KEGG enrichment analysis highlighted the PI3K/AKT signaling pathway, verified with the detection of the activation of PI3K and AKT phosphorylation. Further GO enrichment combined with metabolomics analysis showed that AGP inhibition in cultured VSMCs involved the amino acid metabolic process, and the expression levels of the two key factors PRDM16 and EZH2, identified with PPI and docking analysis, were significantly inhibited by AGP treatment. In conclusion, our study showed that AGP inhibited VSMCs proliferation and migration by suppressing the PI3K/AKT signaling pathway and amino acid metabolism, which, in turn, improved IH.
科研通智能强力驱动
Strongly Powered by AbleSci AI