TransLiver: A Hybrid Transformer Model for Multi-phase Liver Lesion Classification

计算机科学 卷积神经网络 编码器 人工智能 变压器 利用 深度学习 模式识别(心理学) 机器学习 电压 物理 计算机安全 量子力学 操作系统
作者
Xierui Wang,Hanning Ying,Xiaoyin Xu,Xiujun Cai,Min Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 329-338 被引量:3
标识
DOI:10.1007/978-3-031-43895-0_31
摘要

Early diagnosis of focal liver lesions (FLLs) can decrease the fatality rate of liver cancer, which remains a big challenge. We designed a deep learning approach based on CT to assess and differentiate FLLs. To achieve high accuracy, CTs in different phases are integrated to provide more information than single-phase images. While most of the related studies use convolutional neural networks, we exploit the Transformer for multi-phase liver lesion classification. We propose a hybrid model called TransLiver, which has a transformer backbone and complementary convolutional modules. Specifically, we connect modified transformer blocks with convolutional encoder and down-samplers. For multi-phase fusion, we utilize cross phase tokens to reinforce the phases communication. In addition, we introduce a pre-processing unit to resolve realistic annotation issues. Extensive experiments are conducted, in which we achieve an overall accuracy of 90.9% on an in-house dataset of four CT phases and seven liver lesion classes. The results also show distinct advantages in comparison to state-of-art approaches in classification. The code is available at https://github.com/sherrydoge/TransLiver .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅冬云完成签到 ,获得积分10
1秒前
明亮夏旋完成签到 ,获得积分10
2秒前
吴家豪完成签到,获得积分10
3秒前
言辞完成签到,获得积分10
4秒前
默默鞋子完成签到,获得积分10
4秒前
唐禹嘉完成签到 ,获得积分10
4秒前
Chere20200628完成签到 ,获得积分10
7秒前
似风完成签到 ,获得积分10
7秒前
啾比文完成签到,获得积分10
11秒前
13秒前
庾稀完成签到,获得积分10
14秒前
小蘑菇应助qwer采纳,获得10
14秒前
靓丽黑夜完成签到,获得积分20
14秒前
白日梦完成签到 ,获得积分10
14秒前
龙眼完成签到,获得积分10
16秒前
19秒前
guantlv发布了新的文献求助10
19秒前
温暖阑悦完成签到 ,获得积分10
20秒前
陈好好完成签到 ,获得积分10
20秒前
genova完成签到,获得积分10
21秒前
21秒前
21秒前
LingYun完成签到,获得积分10
22秒前
清欢渡完成签到,获得积分10
23秒前
爪爪发布了新的文献求助10
23秒前
懒羊羊完成签到,获得积分10
24秒前
淡淡依霜完成签到 ,获得积分10
24秒前
zhaoyaoshi完成签到 ,获得积分10
25秒前
huoguo完成签到 ,获得积分10
25秒前
haha发布了新的文献求助10
26秒前
虚心的静枫完成签到,获得积分10
26秒前
李佳钰完成签到,获得积分10
27秒前
yoyo完成签到,获得积分10
27秒前
多喝水我发布了新的文献求助10
27秒前
KIKIKI发布了新的文献求助10
28秒前
30秒前
hbu123完成签到,获得积分10
30秒前
奋斗的凡完成签到 ,获得积分10
31秒前
乐观海云完成签到 ,获得积分10
34秒前
wxy完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532