Approximation bounds for convolutional neural networks in operator learning

卷积神经网络 计算机科学 操作员(生物学) 补语(音乐) 超参数 数学证明 人工神经网络 算法 人工智能 深度学习 离散化 建设性的 非线性系统 数学 过程(计算) 基因 转录因子 量子力学 操作系统 生物化学 物理 表型 数学分析 抑制因子 化学 互补 几何学
作者
Nicola Rares Franco,Stefania Fresca,Andrea Manzoni,Paolo Zunino
出处
期刊:Neural Networks [Elsevier BV]
卷期号:161: 129-141 被引量:15
标识
DOI:10.1016/j.neunet.2023.01.029
摘要

Recently, deep Convolutional Neural Networks (CNNs) have proven to be successful when employed in areas such as reduced order modeling of parametrized PDEs. Despite their accuracy and efficiency, the approaches available in the literature still lack a rigorous justification on their mathematical foundations. Motivated by this fact, in this paper we derive rigorous error bounds for the approximation of nonlinear operators by means of CNN models. More precisely, we address the case in which an operator maps a finite dimensional input μ∈Rp onto a functional output uμ:[0,1]d→R, and a neural network model is used to approximate a discretized version of the input-to-output map. The resulting error estimates provide a clear interpretation of the hyperparameters defining the neural network architecture. All the proofs are constructive, and they ultimately reveal a deep connection between CNNs and the Fourier transform. Finally, we complement the derived error bounds by numerical experiments that illustrate their application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
新新新新新发顶刊完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
大个应助ppp采纳,获得10
3秒前
4秒前
5秒前
6秒前
欢欢完成签到 ,获得积分10
7秒前
maytang发布了新的文献求助10
7秒前
7秒前
liangyx完成签到,获得积分10
8秒前
顺利一江完成签到,获得积分10
8秒前
貔貅完成签到,获得积分10
9秒前
9秒前
粥粥完成签到,获得积分10
10秒前
开朗的热狗完成签到 ,获得积分10
11秒前
12秒前
含蓄朝雪发布了新的文献求助10
12秒前
烛夜黎发布了新的文献求助10
12秒前
16秒前
许安完成签到,获得积分10
16秒前
Jasper应助花陵采纳,获得10
17秒前
美好南晴发布了新的文献求助10
17秒前
20秒前
Akim应助迷路的十四采纳,获得10
20秒前
小梁发布了新的文献求助10
20秒前
21秒前
21秒前
xuxingxing发布了新的文献求助10
22秒前
幽默梦之完成签到 ,获得积分10
22秒前
油炸小女孩完成签到,获得积分10
22秒前
23秒前
南宫发布了新的文献求助10
23秒前
小二郎应助宇文安寒采纳,获得10
23秒前
26秒前
ppp发布了新的文献求助10
27秒前
研研研完成签到,获得积分10
27秒前
快乐爱斯米完成签到,获得积分10
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120761
求助须知:如何正确求助?哪些是违规求助? 4326105
关于积分的说明 13478548
捐赠科研通 4159841
什么是DOI,文献DOI怎么找? 2279704
邀请新用户注册赠送积分活动 1281492
关于科研通互助平台的介绍 1220338