Machine learning in the coagulation and hemostasis arena: an overview and evaluation of methods, review of literature, and future directions

子专业 空格(标点符号) 医疗保健 领域(数学分析) 计算机科学 工程伦理学 医学 数据科学 人工智能 管理科学 风险分析(工程) 工程类 政治学 病理 数学分析 法学 操作系统 数学
作者
Hooman H. Rashidi,Kelly Bowers,Morayma Reyes Gil
出处
期刊:Journal of Thrombosis and Haemostasis [Wiley]
卷期号:21 (4): 728-743 被引量:6
标识
DOI:10.1016/j.jtha.2022.12.019
摘要

Artificial Intelligence and machine-learning (ML) studies are increasingly populating the life science space and some have also started to integrate certain clinical decision support tasks. However, most of the activities within this space understandably remain within the investigational domain and are not yet ready for broad use in healthcare. In short, artificial intelligence/ML is still in an infancy stage within the healthcare arena, and we are nowhere near reaching its full potential. Various factors have contributed to this slow adoption rate within healthcare, which include but are not limited to data accessibility and integrity issues, paucity of specialized data science personnel, certain regulatory measures, and various voids within the ML operational platform domain. However, these obstacles and voids have also introduced us to certain opportunities to better understand this arena as we fully embark on this new journey, which undoubtedly will become a major part of our future patient care activities. Considering the aforementioned needs, this review will be concentrating on various ML studies within the coagulation and hemostasis space to better understand their shared study needs, findings, and limitations. However, the ML needs within this subspecialty of medicine are not unique and most of these needs, voids, and limitations also apply to the other medical disciplines. Therefore, this review will not only concentrate on introducing the audience to ML concepts and ML study design elements but also on where the future within this arena in medicine is leading us.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿旭发布了新的文献求助10
刚刚
1秒前
1秒前
粱映菡完成签到,获得积分10
1秒前
香蕉觅云应助Xiaoyan采纳,获得10
2秒前
彘shen完成签到 ,获得积分10
2秒前
2秒前
烟花应助麦子采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
edenz发布了新的文献求助10
4秒前
4秒前
研友_xnEOX8发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
6秒前
6秒前
机智的乌发布了新的文献求助10
6秒前
6秒前
857566发布了新的文献求助10
7秒前
8秒前
xol发布了新的文献求助10
8秒前
koritto发布了新的文献求助10
9秒前
9秒前
bkagyin应助马明旋采纳,获得10
10秒前
10秒前
11秒前
轻松的白容完成签到,获得积分20
11秒前
海豚完成签到 ,获得积分10
11秒前
木可发布了新的文献求助10
11秒前
过儿过儿完成签到,获得积分10
12秒前
14秒前
善学以致用应助忘忧采纳,获得10
14秒前
傲娇蜻蜓完成签到,获得积分10
15秒前
SciGPT应助ClancyJacky采纳,获得10
15秒前
朴实平萱发布了新的文献求助10
15秒前
16秒前
16秒前
LI完成签到,获得积分10
16秒前
ppg123应助老板多加折耳根采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248236
求助须知:如何正确求助?哪些是违规求助? 2891545
关于积分的说明 8267962
捐赠科研通 2559643
什么是DOI,文献DOI怎么找? 1388432
科研通“疑难数据库(出版商)”最低求助积分说明 650749
邀请新用户注册赠送积分活动 627698