GREnet: Gradually REcurrent Network With Curriculum Learning for 2-D Medical Image Segmentation

分割 课程 计算机科学 人工智能 基本事实 像素 卷积神经网络 任务(项目管理) 图像分割 深度学习 机器学习 模式识别(心理学) 工程类 心理学 教育学 系统工程
作者
Jinting Wang,Yujiao Tang,Yang Xiao,Joey Tianyi Zhou,Zhiwen Fang,Feng Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 10018-10032 被引量:9
标识
DOI:10.1109/tnnls.2023.3238381
摘要

Medical image segmentation is a vital stage in medical image analysis. Numerous deep-learning methods are booming to improve the performance of 2-D medical image segmentation, owing to the fast growth of the convolutional neural network. Generally, the manually defined ground truth is utilized directly to supervise models in the training phase. However, direct supervision of the ground truth often results in ambiguity and distractors as complex challenges appear simultaneously. To alleviate this issue, we propose a gradually recurrent network with curriculum learning, which is supervised by gradual information of the ground truth. The whole model is composed of two independent networks. One is the segmentation network denoted as GREnet, which formulates 2-D medical image segmentation as a temporal task supervised by pixel-level gradual curricula in the training phase. The other is a curriculum-mining network. To a certain degree, the curriculum-mining network provides curricula with an increasing difficulty in the ground truth of the training set by progressively uncovering hard-to-segmentation pixels via a data-driven manner. Given that segmentation is a pixel-level dense-prediction challenge, to the best of our knowledge, this is the first work to function 2-D medical image segmentation as a temporal task with pixel-level curriculum learning. In GREnet, the naive UNet is adopted as the backbone, while ConvLSTM is used to establish the temporal link between gradual curricula. In the curriculum-mining network, UNet $++$ supplemented by transformer is designed to deliver curricula through the outputs of the modified UNet $++$ at different layers. Experimental results have demonstrated the effectiveness of GREnet on seven datasets, i.e., three lesion segmentation datasets in dermoscopic images, an optic disc and cup segmentation dataset and a blood vessel segmentation dataset in retinal images, a breast lesion segmentation dataset in ultrasound images, and a lung segmentation dataset in computed tomography (CT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心南风完成签到,获得积分10
刚刚
刚刚
Orange应助胡明月采纳,获得10
刚刚
BMII发布了新的文献求助10
1秒前
高高发布了新的文献求助10
1秒前
天天快乐应助大力沛萍采纳,获得10
1秒前
1秒前
迅速冥茗完成签到,获得积分10
2秒前
2秒前
威武灵阳完成签到,获得积分10
3秒前
栗子完成签到 ,获得积分10
4秒前
5秒前
季英兰发布了新的文献求助10
5秒前
汤圆完成签到 ,获得积分10
5秒前
Apollo完成签到,获得积分10
6秒前
荔枝发布了新的文献求助10
7秒前
示羊发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
qikkk应助文静元风采纳,获得10
9秒前
pluto应助完美的海秋采纳,获得50
11秒前
Owen应助ddsvdv采纳,获得10
11秒前
zz完成签到,获得积分20
12秒前
大力沛萍发布了新的文献求助10
13秒前
烟花应助李所当然采纳,获得30
14秒前
zhangcz发布了新的文献求助10
15秒前
15秒前
16秒前
田様应助BMII采纳,获得10
17秒前
CC发布了新的文献求助10
18秒前
kuku发布了新的文献求助10
19秒前
111111111发布了新的文献求助10
20秒前
Apollo发布了新的文献求助30
20秒前
qwe22222222222完成签到,获得积分10
20秒前
21秒前
wanna发布了新的文献求助10
22秒前
汤圆发布了新的文献求助10
22秒前
yifan92完成签到,获得积分10
22秒前
lmz发布了新的文献求助10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243630
求助须知:如何正确求助?哪些是违规求助? 2887516
关于积分的说明 8248664
捐赠科研通 2556086
什么是DOI,文献DOI怎么找? 1384258
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625738