GREnet: Gradually REcurrent Network With Curriculum Learning for 2-D Medical Image Segmentation

分割 课程 计算机科学 人工智能 基本事实 像素 卷积神经网络 任务(项目管理) 图像分割 深度学习 机器学习 模式识别(心理学) 工程类 心理学 教育学 系统工程
作者
Jinting Wang,Yujiao Tang,Yang Xiao,Joey Tianyi Zhou,Zhiwen Fang,Feng Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 10018-10032 被引量:13
标识
DOI:10.1109/tnnls.2023.3238381
摘要

Medical image segmentation is a vital stage in medical image analysis. Numerous deep-learning methods are booming to improve the performance of 2-D medical image segmentation, owing to the fast growth of the convolutional neural network. Generally, the manually defined ground truth is utilized directly to supervise models in the training phase. However, direct supervision of the ground truth often results in ambiguity and distractors as complex challenges appear simultaneously. To alleviate this issue, we propose a gradually recurrent network with curriculum learning, which is supervised by gradual information of the ground truth. The whole model is composed of two independent networks. One is the segmentation network denoted as GREnet, which formulates 2-D medical image segmentation as a temporal task supervised by pixel-level gradual curricula in the training phase. The other is a curriculum-mining network. To a certain degree, the curriculum-mining network provides curricula with an increasing difficulty in the ground truth of the training set by progressively uncovering hard-to-segmentation pixels via a data-driven manner. Given that segmentation is a pixel-level dense-prediction challenge, to the best of our knowledge, this is the first work to function 2-D medical image segmentation as a temporal task with pixel-level curriculum learning. In GREnet, the naive UNet is adopted as the backbone, while ConvLSTM is used to establish the temporal link between gradual curricula. In the curriculum-mining network, UNet $++$ supplemented by transformer is designed to deliver curricula through the outputs of the modified UNet $++$ at different layers. Experimental results have demonstrated the effectiveness of GREnet on seven datasets, i.e., three lesion segmentation datasets in dermoscopic images, an optic disc and cup segmentation dataset and a blood vessel segmentation dataset in retinal images, a breast lesion segmentation dataset in ultrasound images, and a lung segmentation dataset in computed tomography (CT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
逢场作戱__完成签到 ,获得积分10
4秒前
李海平完成签到 ,获得积分10
4秒前
爆米花应助hanabi采纳,获得10
5秒前
六月残雪完成签到 ,获得积分10
15秒前
18秒前
20秒前
陈鹿华完成签到 ,获得积分10
25秒前
不怕考试的赵无敌完成签到 ,获得积分10
25秒前
baibai发布了新的文献求助10
25秒前
lapin完成签到,获得积分10
34秒前
纯情的寻绿完成签到 ,获得积分10
34秒前
自然的含蕾完成签到 ,获得积分10
44秒前
46秒前
随心所欲完成签到 ,获得积分10
48秒前
执着的草丛完成签到,获得积分10
59秒前
oleskarabach完成签到,获得积分20
1分钟前
you完成签到,获得积分10
1分钟前
郑洋完成签到 ,获得积分10
1分钟前
1分钟前
hdc12138完成签到,获得积分10
1分钟前
美好颜完成签到,获得积分20
1分钟前
NNUsusan完成签到,获得积分10
1分钟前
loga80完成签到,获得积分0
1分钟前
joeqin完成签到,获得积分10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
慧慧完成签到 ,获得积分10
1分钟前
Layace完成签到 ,获得积分10
1分钟前
fishss完成签到 ,获得积分10
1分钟前
高是个科研狗完成签到 ,获得积分10
1分钟前
ybheqiang123456完成签到,获得积分10
1分钟前
2分钟前
Glory完成签到 ,获得积分10
2分钟前
飞飞飞发布了新的文献求助30
2分钟前
笨笨青筠完成签到 ,获得积分10
2分钟前
丘比特应助美好颜采纳,获得10
2分钟前
baibai完成签到,获得积分10
2分钟前
轩辕德地完成签到,获得积分10
2分钟前
2分钟前
相南相北完成签到 ,获得积分10
2分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736714
求助须知:如何正确求助?哪些是违规求助? 3280668
关于积分的说明 10020218
捐赠科研通 2997394
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656