亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation

聚类分析 判别式 计算机科学 分割 质心 人工智能 模式识别(心理学) 领域(数学分析) 数学 数学分析
作者
Yihong Cao,Hui Zhang,Xiao Lu,Yurong Chen,Zheng Xiao,Yaonan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3822-3832 被引量:1
标识
DOI:10.1109/tcsvt.2023.3243402
摘要

Unsupervised domain adaptation has attracted widespread attention as a promising method to solve the labeling difficulties of semantic segmentation tasks. It trains a segmentation network for unlabeled real target images using easily available labeled virtual source images. To improve performance, clustering is used to obtain domain-invariant feature representations. However, most clustering-based methods indiscriminately cluster all features mapped by category from both domains, causing the centroid shift and affecting the generation of discriminative features. We propose a novel clustering-based method that uses an adaptive refining-aggregation-separation framework, which learns the discriminative features by designing different adaptive schemes for different domains and features. The clustering does not require any tunable thresholds. To estimate more accurate domain-invariant centroids, we design different ways to guide the adaptive refinement of different domain features. A critic is proposed to directly evaluate the confidence of target features to solve the absence of target labels. We introduce a domain-balanced aggregation loss and two adaptive separation losses for distance and similarity respectively, which can discriminate clustering features by combining the refinement strategy to improve segmentation performance. Experimental results on GTA $5\rightarrow $ Cityscapes and SYNTHIA $\rightarrow $ Cityscapes benchmarks show that our method outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李小猫完成签到,获得积分10
刚刚
李小猫发布了新的文献求助10
4秒前
4秒前
6秒前
Loukas完成签到 ,获得积分10
8秒前
PAIDAXXXX发布了新的文献求助10
8秒前
10秒前
10秒前
12秒前
hahahan完成签到 ,获得积分10
14秒前
Ethan应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
23秒前
ddd发布了新的文献求助10
24秒前
25秒前
轻松戎完成签到,获得积分10
25秒前
26秒前
ddd完成签到,获得积分10
31秒前
heyunhua23完成签到,获得积分10
31秒前
32秒前
36秒前
36秒前
dilmurat10发布了新的文献求助10
37秒前
37秒前
香蕉味大辣条完成签到,获得积分10
40秒前
Dr完成签到,获得积分10
41秒前
50秒前
54秒前
54秒前
58秒前
1分钟前
1分钟前
领导范儿应助PAIDAXXXX采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Frank给ChemPhys的求助进行了留言
1分钟前
唐宋八大家完成签到,获得积分10
1分钟前
贰壹发布了新的文献求助10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198471
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774