Adaptive Refining-Aggregation-Separation Framework for Unsupervised Domain Adaptation Semantic Segmentation

聚类分析 判别式 计算机科学 分割 质心 人工智能 模式识别(心理学) 领域(数学分析) 数学 数学分析
作者
Yihong Cao,Hui Zhang,Xiao Lu,Yurong Chen,Zheng Xiao,Yaonan Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3822-3832 被引量:10
标识
DOI:10.1109/tcsvt.2023.3243402
摘要

Unsupervised domain adaptation has attracted widespread attention as a promising method to solve the labeling difficulties of semantic segmentation tasks. It trains a segmentation network for unlabeled real target images using easily available labeled virtual source images. To improve performance, clustering is used to obtain domain-invariant feature representations. However, most clustering-based methods indiscriminately cluster all features mapped by category from both domains, causing the centroid shift and affecting the generation of discriminative features. We propose a novel clustering-based method that uses an adaptive refining-aggregation-separation framework, which learns the discriminative features by designing different adaptive schemes for different domains and features. The clustering does not require any tunable thresholds. To estimate more accurate domain-invariant centroids, we design different ways to guide the adaptive refinement of different domain features. A critic is proposed to directly evaluate the confidence of target features to solve the absence of target labels. We introduce a domain-balanced aggregation loss and two adaptive separation losses for distance and similarity respectively, which can discriminate clustering features by combining the refinement strategy to improve segmentation performance. Experimental results on GTA $5\rightarrow $ Cityscapes and SYNTHIA $\rightarrow $ Cityscapes benchmarks show that our method outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyq1177完成签到 ,获得积分10
刚刚
哦豁拐咯完成签到,获得积分10
1秒前
毕业大吉完成签到,获得积分20
1秒前
糖丸完成签到,获得积分10
1秒前
颖仔完成签到,获得积分10
2秒前
doin完成签到,获得积分10
2秒前
发一篇sci完成签到 ,获得积分10
2秒前
老实皮皮虾完成签到,获得积分10
3秒前
慕青应助石头采纳,获得10
4秒前
Kins完成签到,获得积分10
4秒前
清浅发布了新的文献求助20
4秒前
王五发布了新的文献求助10
4秒前
康康米其林完成签到,获得积分10
5秒前
5秒前
王小海111完成签到 ,获得积分10
5秒前
6秒前
A阿澍完成签到,获得积分10
6秒前
淡淡凌翠完成签到,获得积分10
6秒前
科研通AI2S应助FLZLC采纳,获得10
7秒前
anthea完成签到 ,获得积分10
7秒前
元气糖完成签到 ,获得积分10
7秒前
7秒前
8秒前
Sky完成签到,获得积分10
8秒前
8秒前
LL666完成签到 ,获得积分10
9秒前
9秒前
10秒前
顿立男完成签到,获得积分20
10秒前
xz完成签到 ,获得积分10
10秒前
11秒前
草莓味的榴莲完成签到,获得积分10
12秒前
儒雅的蜜粉完成签到,获得积分10
12秒前
小马甲应助chuyinweilai采纳,获得10
12秒前
mzhmhy发布了新的文献求助10
12秒前
缥缈冷安完成签到,获得积分10
13秒前
13秒前
丰富的小甜瓜完成签到,获得积分10
13秒前
星云完成签到 ,获得积分20
13秒前
怡然云朵发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118