Smart Water Meter Based on Deep Neural Network and Undersampling for PWNC Detection

欠采样 计算机科学 智能电表 水流 人工智能 卷积神经网络 自动抄表 深度学习 机器学习 实时计算 工程类 无线 电信 电气工程 环境工程
作者
Marco Carratù,Salvatore Dello Iacono,Giuseppe Di Leo,Vincenzo Gallo,Consolatina Liguori,Antonio Pietrosanto
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3242018
摘要

Having become aware of how limited all the natural resources are, the water leakage problem in piping systems has become a stimulating topic. This problem increased over the past few years even though innovative tools and techniques appeared in the literature and in the consumer market. Identifying water leaks at the nearest point, the household level, is still an unsolved problem because most water meters are mechanical and, therefore, cannot detect leaks. While the issue is not important for water service providers since consumption is charged to the user, the resolution is crucial due to the increasingly relevant concern of saving natural resources. The detection of small but continuous leaks of drinking water in domestic systems is addressed in this work. Machine learning approaches enabled image processing techniques also in uncontrolled environments, overcoming the classical methods but introducing new challenges such as power consumption. Using a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks within an adaptive undersampling strategy, it is possible to process the images captured from the mechanical water meter dial and identify the period with null consumption (PWNC) or the consumption class. The presented solution can classify the water flow into four different classes, and, in the case of absence or small flow, its function becomes to detect leakages. Analyzing images from a mechanical water meter quadrant, it has been possible to identify PWNC and detect small water leakages in the domestic environment under common consumer flow profiles. In addition to the confusion matrices, the synthetic parameters of Sørensen–Dice coefficient (DSC) and Jaccard Index have been used and presented to quantify the performance of the proposed deep neural network (DNN). The conducted experiments on static and dynamic water flow demonstrated the applicability of this approach and the possibility of an increase in PWNC identification, thanks to the adaptative increase in the sampling time. Moreover, the reduction in sampling time allows for the reduction in computational load and power consumption in embedded scenarios where limited energy is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuyu98发布了新的文献求助30
1秒前
Evander发布了新的文献求助10
1秒前
lemon发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
yzm发布了新的文献求助10
4秒前
4秒前
心心应助科研通管家采纳,获得10
4秒前
abccd123完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
77完成签到,获得积分10
5秒前
5秒前
6秒前
英姑应助八月宁静采纳,获得10
7秒前
上官若男应助万松辉采纳,获得10
8秒前
77发布了新的文献求助10
10秒前
研友_VZG7GZ应助yzm采纳,获得10
10秒前
可爱的函函应助应急食品采纳,获得10
11秒前
12秒前
汐颜紫雨完成签到,获得积分10
13秒前
14秒前
14秒前
fuyu98完成签到,获得积分10
15秒前
15秒前
mashibeo发布了新的文献求助30
17秒前
赵俊博发布了新的文献求助10
17秒前
盐焗小星球完成签到 ,获得积分10
17秒前
昏睡的朝雪完成签到,获得积分20
17秒前
GGMJ发布了新的文献求助10
18秒前
Aikesi完成签到,获得积分10
18秒前
lw不好找完成签到,获得积分10
19秒前
刻苦念桃发布了新的文献求助10
19秒前
pluto应助yuanying采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073