Smart Water Meter Based on Deep Neural Network and Undersampling for PWNC Detection

欠采样 计算机科学 智能电表 水流 人工智能 卷积神经网络 自动抄表 深度学习 机器学习 实时计算 工程类 无线 电信 电气工程 环境工程
作者
Marco Carratù,Salvatore Dello Iacono,Giuseppe Di Leo,Vincenzo Gallo,Consolatina Liguori,Antonio Pietrosanto
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3242018
摘要

Having become aware of how limited all the natural resources are, the water leakage problem in piping systems has become a stimulating topic. This problem increased over the past few years even though innovative tools and techniques appeared in the literature and in the consumer market. Identifying water leaks at the nearest point, the household level, is still an unsolved problem because most water meters are mechanical and, therefore, cannot detect leaks. While the issue is not important for water service providers since consumption is charged to the user, the resolution is crucial due to the increasingly relevant concern of saving natural resources. The detection of small but continuous leaks of drinking water in domestic systems is addressed in this work. Machine learning approaches enabled image processing techniques also in uncontrolled environments, overcoming the classical methods but introducing new challenges such as power consumption. Using a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks within an adaptive undersampling strategy, it is possible to process the images captured from the mechanical water meter dial and identify the period with null consumption (PWNC) or the consumption class. The presented solution can classify the water flow into four different classes, and, in the case of absence or small flow, its function becomes to detect leakages. Analyzing images from a mechanical water meter quadrant, it has been possible to identify PWNC and detect small water leakages in the domestic environment under common consumer flow profiles. In addition to the confusion matrices, the synthetic parameters of Sørensen–Dice coefficient (DSC) and Jaccard Index have been used and presented to quantify the performance of the proposed deep neural network (DNN). The conducted experiments on static and dynamic water flow demonstrated the applicability of this approach and the possibility of an increase in PWNC identification, thanks to the adaptative increase in the sampling time. Moreover, the reduction in sampling time allows for the reduction in computational load and power consumption in embedded scenarios where limited energy is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
空白完成签到,获得积分10
刚刚
所所应助合适苗条采纳,获得10
刚刚
专注易绿完成签到,获得积分10
1秒前
Anne应助吱嗷赵采纳,获得10
1秒前
xin应助666采纳,获得20
2秒前
YY发布了新的文献求助10
2秒前
2秒前
huanhuan完成签到,获得积分10
3秒前
小刘不笨完成签到,获得积分10
3秒前
吕绪特完成签到 ,获得积分10
3秒前
4秒前
愉快的夏菡完成签到,获得积分10
4秒前
研友_gnv61n完成签到,获得积分10
4秒前
zmy完成签到,获得积分10
4秒前
小蘑菇应助守约采纳,获得10
5秒前
5秒前
空白发布了新的文献求助10
6秒前
buno应助721采纳,获得20
6秒前
石阶上完成签到 ,获得积分10
6秒前
du完成签到 ,获得积分10
6秒前
Xu完成签到,获得积分10
7秒前
mmmm完成签到,获得积分10
7秒前
7秒前
情怀应助YY采纳,获得10
7秒前
懦弱的安珊完成签到,获得积分10
8秒前
Akim应助xiaokezhang采纳,获得10
8秒前
8秒前
柠木完成签到 ,获得积分10
8秒前
系统提示发布了新的文献求助10
8秒前
marigold完成签到,获得积分10
8秒前
Gaoge完成签到,获得积分10
9秒前
愉快的无招完成签到,获得积分10
9秒前
9秒前
HEIKU应助习习采纳,获得10
10秒前
10秒前
10秒前
10秒前
合适苗条完成签到,获得积分10
10秒前
Zn应助开水泡饼采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678