亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Smart Water Meter Based on Deep Neural Network and Undersampling for PWNC Detection

欠采样 计算机科学 智能电表 水流 人工智能 卷积神经网络 自动抄表 深度学习 机器学习 实时计算 工程类 无线 电信 电气工程 环境工程
作者
Marco Carratù,Salvatore Dello Iacono,Giuseppe Di Leo,Vincenzo Gallo,Consolatina Liguori,Antonio Pietrosanto
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3242018
摘要

Having become aware of how limited all the natural resources are, the water leakage problem in piping systems has become a stimulating topic. This problem increased over the past few years even though innovative tools and techniques appeared in the literature and in the consumer market. Identifying water leaks at the nearest point, the household level, is still an unsolved problem because most water meters are mechanical and, therefore, cannot detect leaks. While the issue is not important for water service providers since consumption is charged to the user, the resolution is crucial due to the increasingly relevant concern of saving natural resources. The detection of small but continuous leaks of drinking water in domestic systems is addressed in this work. Machine learning approaches enabled image processing techniques also in uncontrolled environments, overcoming the classical methods but introducing new challenges such as power consumption. Using a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks within an adaptive undersampling strategy, it is possible to process the images captured from the mechanical water meter dial and identify the period with null consumption (PWNC) or the consumption class. The presented solution can classify the water flow into four different classes, and, in the case of absence or small flow, its function becomes to detect leakages. Analyzing images from a mechanical water meter quadrant, it has been possible to identify PWNC and detect small water leakages in the domestic environment under common consumer flow profiles. In addition to the confusion matrices, the synthetic parameters of Sørensen–Dice coefficient (DSC) and Jaccard Index have been used and presented to quantify the performance of the proposed deep neural network (DNN). The conducted experiments on static and dynamic water flow demonstrated the applicability of this approach and the possibility of an increase in PWNC identification, thanks to the adaptative increase in the sampling time. Moreover, the reduction in sampling time allows for the reduction in computational load and power consumption in embedded scenarios where limited energy is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
zhang发布了新的文献求助10
13秒前
LMY1411完成签到,获得积分10
32秒前
gszy1975完成签到,获得积分10
43秒前
1分钟前
Lin完成签到,获得积分10
1分钟前
zl发布了新的文献求助10
2分钟前
zl完成签到,获得积分10
2分钟前
希望天下0贩的0应助jason采纳,获得10
2分钟前
spark810发布了新的文献求助200
2分钟前
jason完成签到,获得积分10
2分钟前
机灵自中完成签到,获得积分10
2分钟前
龙龙发布了新的文献求助30
2分钟前
zhang发布了新的文献求助10
3分钟前
zhang发布了新的文献求助10
3分钟前
胡呵呵发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助胡呵呵采纳,获得10
4分钟前
5分钟前
坚强心锁完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
文迪厄尔完成签到,获得积分10
7分钟前
李健的小迷弟应助sk采纳,获得50
7分钟前
coldstork完成签到,获得积分10
8分钟前
研友_ndvWy8完成签到,获得积分10
8分钟前
9分钟前
sk发布了新的文献求助50
9分钟前
NexusExplorer应助liujing_242022采纳,获得10
9分钟前
sk完成签到,获得积分10
9分钟前
9分钟前
我是老大应助sk采纳,获得10
9分钟前
liujing_242022完成签到,获得积分10
9分钟前
9分钟前
9分钟前
阿卡米星发布了新的文献求助20
9分钟前
阿卡米星完成签到,获得积分10
10分钟前
10分钟前
10分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229680
求助须知:如何正确求助?哪些是违规求助? 2877246
关于积分的说明 8198587
捐赠科研通 2544707
什么是DOI,文献DOI怎么找? 1374581
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621808