Smart Water Meter Based on Deep Neural Network and Undersampling for PWNC Detection

欠采样 计算机科学 智能电表 水流 人工智能 卷积神经网络 自动抄表 深度学习 机器学习 实时计算 工程类 无线 电信 电气工程 环境工程
作者
Marco Carratù,Salvatore Dello Iacono,Giuseppe Di Leo,Vincenzo Gallo,Consolatina Liguori,Antonio Pietrosanto
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3242018
摘要

Having become aware of how limited all the natural resources are, the water leakage problem in piping systems has become a stimulating topic. This problem increased over the past few years even though innovative tools and techniques appeared in the literature and in the consumer market. Identifying water leaks at the nearest point, the household level, is still an unsolved problem because most water meters are mechanical and, therefore, cannot detect leaks. While the issue is not important for water service providers since consumption is charged to the user, the resolution is crucial due to the increasingly relevant concern of saving natural resources. The detection of small but continuous leaks of drinking water in domestic systems is addressed in this work. Machine learning approaches enabled image processing techniques also in uncontrolled environments, overcoming the classical methods but introducing new challenges such as power consumption. Using a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks within an adaptive undersampling strategy, it is possible to process the images captured from the mechanical water meter dial and identify the period with null consumption (PWNC) or the consumption class. The presented solution can classify the water flow into four different classes, and, in the case of absence or small flow, its function becomes to detect leakages. Analyzing images from a mechanical water meter quadrant, it has been possible to identify PWNC and detect small water leakages in the domestic environment under common consumer flow profiles. In addition to the confusion matrices, the synthetic parameters of Sørensen–Dice coefficient (DSC) and Jaccard Index have been used and presented to quantify the performance of the proposed deep neural network (DNN). The conducted experiments on static and dynamic water flow demonstrated the applicability of this approach and the possibility of an increase in PWNC identification, thanks to the adaptative increase in the sampling time. Moreover, the reduction in sampling time allows for the reduction in computational load and power consumption in embedded scenarios where limited energy is available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助整齐的寄松采纳,获得10
刚刚
酷波er应助Liying采纳,获得10
刚刚
monkey发布了新的文献求助20
刚刚
1秒前
咻咻发布了新的文献求助10
1秒前
Jared应助苏苏采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
科研通AI6应助tianfx3采纳,获得10
2秒前
琳琳完成签到,获得积分10
2秒前
yimi完成签到,获得积分10
2秒前
3秒前
婧达令完成签到,获得积分10
3秒前
坚强丹雪完成签到,获得积分10
3秒前
3秒前
xiaochaoge发布了新的文献求助10
4秒前
sun完成签到,获得积分10
4秒前
4秒前
打打应助九霄采纳,获得10
4秒前
qibo完成签到,获得积分10
4秒前
甜酒完成签到 ,获得积分10
4秒前
科目三应助sskk采纳,获得10
4秒前
踏实的丝发布了新的文献求助10
5秒前
收拾完完成签到,获得积分10
5秒前
5秒前
5秒前
周三完成签到,获得积分10
6秒前
所所应助淡定的不言采纳,获得10
6秒前
飞飞飞发布了新的文献求助10
6秒前
Triumph完成签到,获得积分10
6秒前
6秒前
科研通AI6应助灵灵妖采纳,获得30
6秒前
6秒前
科研通AI6应助灵灵妖采纳,获得10
6秒前
核桃发布了新的文献求助10
7秒前
Hello应助雨歌采纳,获得10
7秒前
大气手链发布了新的文献求助10
8秒前
8秒前
Fury完成签到,获得积分10
8秒前
研友_ngqyz8发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055