Smart Water Meter Based on Deep Neural Network and Undersampling for PWNC Detection

欠采样 计算机科学 智能电表 水流 人工智能 卷积神经网络 自动抄表 深度学习 机器学习 实时计算 工程类 无线 电信 电气工程 环境工程
作者
Marco Carratù,Salvatore Dello Iacono,Giuseppe Di Leo,Vincenzo Gallo,Consolatina Liguori,Antonio Pietrosanto
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:9
标识
DOI:10.1109/tim.2023.3242018
摘要

Having become aware of how limited all the natural resources are, the water leakage problem in piping systems has become a stimulating topic. This problem increased over the past few years even though innovative tools and techniques appeared in the literature and in the consumer market. Identifying water leaks at the nearest point, the household level, is still an unsolved problem because most water meters are mechanical and, therefore, cannot detect leaks. While the issue is not important for water service providers since consumption is charged to the user, the resolution is crucial due to the increasingly relevant concern of saving natural resources. The detection of small but continuous leaks of drinking water in domestic systems is addressed in this work. Machine learning approaches enabled image processing techniques also in uncontrolled environments, overcoming the classical methods but introducing new challenges such as power consumption. Using a combination of convolutional neural networks (CNNs) and long short-term memory (LSTM) networks within an adaptive undersampling strategy, it is possible to process the images captured from the mechanical water meter dial and identify the period with null consumption (PWNC) or the consumption class. The presented solution can classify the water flow into four different classes, and, in the case of absence or small flow, its function becomes to detect leakages. Analyzing images from a mechanical water meter quadrant, it has been possible to identify PWNC and detect small water leakages in the domestic environment under common consumer flow profiles. In addition to the confusion matrices, the synthetic parameters of Sørensen–Dice coefficient (DSC) and Jaccard Index have been used and presented to quantify the performance of the proposed deep neural network (DNN). The conducted experiments on static and dynamic water flow demonstrated the applicability of this approach and the possibility of an increase in PWNC identification, thanks to the adaptative increase in the sampling time. Moreover, the reduction in sampling time allows for the reduction in computational load and power consumption in embedded scenarios where limited energy is available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYT完成签到 ,获得积分10
刚刚
ll完成签到,获得积分10
刚刚
所所应助勤恳凌丝采纳,获得10
刚刚
zhoujingya完成签到,获得积分10
1秒前
30完成签到,获得积分10
1秒前
Carrie完成签到 ,获得积分10
2秒前
3秒前
盏盏发布了新的文献求助10
3秒前
Owen应助跳跃的萧采纳,获得10
6秒前
沉小墨完成签到 ,获得积分10
7秒前
潇洒夜安发布了新的文献求助10
7秒前
9秒前
佳loong完成签到,获得积分10
9秒前
沂昀完成签到 ,获得积分10
11秒前
12秒前
12秒前
陶玲完成签到,获得积分10
13秒前
JinyuGuo发布了新的文献求助10
14秒前
潇洒夜安完成签到,获得积分10
15秒前
七七完成签到,获得积分10
15秒前
lasku发布了新的文献求助10
15秒前
gaobowang完成签到,获得积分10
15秒前
TanFT发布了新的文献求助10
15秒前
勤恳凌丝发布了新的文献求助10
16秒前
852应助J_C_Van采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
李健应助热情冬灵采纳,获得10
20秒前
lucky完成签到,获得积分10
20秒前
小马甲应助金博洋采纳,获得10
21秒前
23秒前
TanFT完成签到,获得积分10
24秒前
开心的饼干完成签到,获得积分10
24秒前
乐乐应助义气翩跹采纳,获得10
25秒前
lasku完成签到,获得积分10
25秒前
kmario完成签到,获得积分10
26秒前
26秒前
赘婿应助盏盏采纳,获得30
27秒前
无聊的老姆完成签到 ,获得积分10
27秒前
vvz完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425091
求助须知:如何正确求助?哪些是违规求助? 4539235
关于积分的说明 14166259
捐赠科研通 4456389
什么是DOI,文献DOI怎么找? 2444167
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412539