Contrastive graph clustering with adaptive filter

计算机科学 聚类分析 图形 人工智能 同性恋 模式识别(心理学) 滤波器(信号处理) 机器学习 数据挖掘 理论计算机科学 数学 计算机视觉 组合数学
作者
Xuanting Xie,Wenyu Chen,Zhao Kang,Chong Peng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:219: 119645-119645 被引量:4
标识
DOI:10.1016/j.eswa.2023.119645
摘要

Graph clustering has received significant attention in recent years due to the breakthrough of graph neural networks (GNNs). However, GNNs frequently assume strong data homophily, which is not true in many real-world applications. Furthermore, practical graphs are typically noisy and sparse, which inevitably degrades the clustering performance. To this end, we propose a novel Contrastive Graph Clustering (CGC) method with adaptive filter framework. We first design an adaptive filter that can automatically learn a suitable filter for different data, mining holistic information beyond low-frequency components and encoding topology structure information into features. Afterward, we learn a refined graph based on a graph-level contrastive mechanism, which further boosts graph discriminability. Extensive experiments show that the proposed CGC method achieves significant improvement over state-of-the-art methods on several benchmark datasets. In particular, our simple method, which does not employ neural networks, outperforms many deep learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助balzacsun采纳,获得10
刚刚
轻松的悟空完成签到 ,获得积分10
2秒前
susan完成签到,获得积分10
3秒前
0029完成签到,获得积分10
5秒前
Aki完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
8秒前
LXR完成签到,获得积分10
10秒前
thchiang发布了新的文献求助10
11秒前
李健应助北城采纳,获得10
11秒前
WDK发布了新的文献求助10
11秒前
12秒前
轻松的贞发布了新的文献求助10
12秒前
医学生Mavis完成签到,获得积分10
14秒前
nextconnie完成签到,获得积分10
14秒前
汉堡包应助yyj采纳,获得10
15秒前
zqh740发布了新的文献求助30
16秒前
17秒前
NexusExplorer应助pharmstudent采纳,获得10
18秒前
熊遇蜜完成签到,获得积分10
20秒前
panzer完成签到,获得积分10
21秒前
22秒前
lyt发布了新的文献求助10
23秒前
六月毕业关注了科研通微信公众号
24秒前
petrichor应助程程采纳,获得10
25秒前
圆儿完成签到 ,获得积分10
25秒前
潇洒的灵萱完成签到,获得积分10
25秒前
25秒前
25秒前
Toooo完成签到,获得积分10
26秒前
zqh740完成签到,获得积分10
26秒前
科研通AI5应助thchiang采纳,获得10
26秒前
lizzzzzz完成签到,获得积分10
27秒前
yyj发布了新的文献求助10
27秒前
请和我吃饭完成签到,获得积分10
28秒前
北城发布了新的文献求助10
29秒前
勤恳冰淇淋完成签到 ,获得积分10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824