钙钛矿(结构)
串联
能量转换效率
钙钛矿太阳能电池
材料科学
太阳能电池
光电子学
带隙
化学
结晶学
复合材料
作者
Saddam Hussain,Adnan Daud Khan,Mudasar Rashid,Naveed Ahmad,Haseeb A. Khan
出处
期刊:Optik
[Elsevier]
日期:2023-04-01
卷期号:277: 170714-170714
被引量:1
标识
DOI:10.1016/j.ijleo.2023.170714
摘要
Tunable bandgap and excellent optoelectronic properties can make perovskite solar cells (PSC) achieve high power conversion efficiencies in single junction as well as tandem architecture. In this work, 3 types of perovskite solar cell architectures i.e., single-junction, all-perovskite tandem and all-perovskite triple-junction, are modeled in SunSolve. The optimized layer thickness, reflection/parasitic absorptions, quantum efficiency, IV characteristics and power conversion efficiencies (PCE) of each cell are analyzed in detail. The single-junction solar cell of CH3NH3PbI3 with bandgap of 1.55 eV produces the PCE of 21.4%. The all-perovskite tandem solar cell of (CH3NH3)0.9Cs0.1Pb(I0.6Br0.4)3 (1.82 eV) as top sub-cell and CH3NH3Pb0.5Sn0.5I3 (1.22 eV) as bottom sub-cell exhibits a PCE of 26.06%. While the all-perovskite triple-junction solar cell of FA0.83Cs0.17Pb(I0.7Br0.3)3 (1.94 eV) as top sub-cell, CH3NH3PbI3 (1.55 eV) as middle sub-cell and CH3NH3Pb0.5Sn0.5I3 (1.22 eV) as bottom sub-cell has the remarkable PCE potential of 28.38%. This work guides towards multi-junction solar cells based on perovskite materials for the low-cost utilization of solar energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI