EEG-Based Motor Imagery Recognition Framework via Multisubject Dynamic Transfer and Iterative Self-Training

计算机科学 判别式 运动表象 脑-机接口 人工智能 分类器(UML) 学习迁移 模式识别(心理学) 解码方法 机器学习 脑电图 数据挖掘 算法 心理学 精神科
作者
He Wang,Peiyin Chen,Meng Zhang,Jianbo Zhang,Xinlin Sun,Mengyu Li,Xiong Yang,Zhongke Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10698-10712 被引量:15
标识
DOI:10.1109/tnnls.2023.3243339
摘要

A robust decoding model that can efficiently deal with the subject and period variation is urgently needed to apply the brain-computer interface (BCI) system. The performance of most electroencephalogram (EEG) decoding models depends on the characteristics of specific subjects and periods, which require calibration and training with annotated data prior to application. However, this situation will become unacceptable as it would be difficult for subjects to collect data for an extended period, especially in the rehabilitation process of disability based on motor imagery (MI). To address this issue, we propose an unsupervised domain adaptation framework called iterative self-training multisubject domain adaptation (ISMDA) that focuses on the offline MI task. First, the feature extractor is purposefully designed to map the EEG to a latent space of discriminative representations. Second, the attention module based on dynamic transfer matches the source domain and target domain samples with a higher coincidence degree in latent space. Then, an independent classifier oriented to the target domain is employed in the first stage of the iterative training process to cluster the samples of the target domain through similarity. Finally, a pseudolabel algorithm based on certainty and confidence is employed in the second stage of the iterative training process to adequately calibrate the error between prediction and empirical probabilities. To evaluate the effectiveness of the model, extensive testing has been performed on three publicly available MI datasets, the BCI IV IIa, the High gamma dataset, and Kwon et al. datasets. The proposed method achieved 69.51%, 82.38%, and 90.98% cross-subject classification accuracy on the three datasets, which outperforms the current state-of-the-art offline algorithms. Meanwhile, all results demonstrated that the proposed method could address the main challenges of the offline MI paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Eden发布了新的文献求助10
6秒前
Orange应助北北采纳,获得30
7秒前
我想当太空人完成签到,获得积分10
11秒前
kkk完成签到,获得积分10
17秒前
1234hai完成签到 ,获得积分10
17秒前
Li完成签到,获得积分10
17秒前
斯文的楷瑞完成签到,获得积分10
18秒前
sw123完成签到 ,获得积分10
28秒前
学吗完成签到,获得积分10
34秒前
郝雨竹郝雨竹完成签到 ,获得积分10
35秒前
果汁狸完成签到 ,获得积分10
38秒前
只会查文献完成签到,获得积分10
40秒前
北北完成签到,获得积分10
41秒前
43秒前
马龙完成签到,获得积分10
45秒前
英姑应助Eden采纳,获得10
47秒前
十七岁男高中生完成签到 ,获得积分10
52秒前
自由溪灵完成签到,获得积分10
55秒前
kiki完成签到,获得积分10
55秒前
Olivia完成签到,获得积分10
1分钟前
zpz完成签到 ,获得积分10
1分钟前
grass完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得100
1分钟前
卫半山完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488