咀嚼度
超声波
化学
流变学
豌豆蛋白
溶解度
超声波传感器
材料科学
生物物理学
食品科学
有机化学
复合材料
声学
生物
物理
作者
Huijing Chen,Zehang Guo,Zhirong Wang,Bing Yang,Xuhui Chen,Leyan Wen,Qingqing Yang,Jianquan Kan
标识
DOI:10.1016/j.ultsonch.2023.106338
摘要
There is a burgeoning demand for modified plant-based proteins with desirable physicochemical and functional properties. The cereal Qingke is a promising alternative protein source, but its use has been limited by its imperfect functional characteristics. To investigate the effect of ultrasound treatment on Qingke protein, we applied single- (40 kHz), dual- (28/40 kHz), and tri- (28/40/50 kHz) frequency ultrasound on the isolated protein and measured subsequent physicochemical and structural changes. The results showed that the physicochemical properties of proteins were modified following ultrasound treatment, and many of these changes significantly increased with increasing frequency. Compared with the native Qingke protein (control), the solubility, foaming activity, stability, and water or oil holding capacity of tri-frequency ultrasound modified Qingke protein increased by 43.54%, 20.83%, 20.51%, 28.9%, and 45.2%, respectively. Furthermore, ultrasound treatment altered the secondary and tertiary structures of the protein resulting in more exposed chromophoric groups and inner hydrophobic groups, as well as reduced β-sheets and increasedrandom coils, relative to the control. Rheological and texture characterization indicated that the values of G' and G'', hardness, gumminess, and chewiness decreased after ultrasound treatment. This study could provide a theoretical basis for the application of multi-frequency ultrasonic technology for modification of Qingke protein to expand its potential use as an alternative protein source.
科研通智能强力驱动
Strongly Powered by AbleSci AI