Research on Multi-Sensor Fusion SLAM Algorithm Based on Improved Gmapping

计算机科学 传感器融合 融合 算法 人工智能 语言学 哲学
作者
Chengjun Tian,Haobo Liu,Zhe Liu,Hongyang Li,Yuyu Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 13690-13703 被引量:26
标识
DOI:10.1109/access.2023.3243633
摘要

Simultaneous Localization and Mapping (SLAM) is the core technology of the intelligent robot system, and it is also the basis for its autonomous movement. In recent years, it has been found that SLAM using a single sensor has certain limitations, such as Inertial Measurement Unit (IMU) noise and serious drift, and 2D radar can only detect environmental information on the same horizontal plane. In this regard, this paper constructs a multi-sensor back-end fusion SLAM algorithm that combines vision, laser, encoder and IMU information. Experiments have proved that compared with using a single sensor, the application of a multi-sensor fusion system makes the edges of the constructed map clearer and the noise reduced. Aiming at the problem of increased calculation caused by particle degradation and too many particles, this paper improves the Gmappping algorithm, and uses the combination of selective resampling and Kullback-Leibler Distance (KLD) sampling to complete resampling. It has been proved by experiments that compared with the original algorithm of Gmapping, the application of the improved algorithm increases the particle convergence speed by 39.85% in the process of indoor mapping. Aiming at the problems that the traditional loop detection algorithm is easily affected by environmental factors, resulting in low detection accuracy, and the loop detection algorithm based on deep convolutional neural network has a large amount of calculation and takes a long time to detect. The main research of this paper is to apply a deep learning-based loop detection algorithm on the multi-sensor fusion framework, and use the combination of high-dimensional and low-dimensional features of the image for loop detection. This paper uses different algorithms to conduct comparative experiments on the dataset CityCentre. The experimental results show that compared with the traditional algorithms Bag of Words (BoW), AlexNet algorithm, VGG19 algorithm, and ResNet32 algorithm, the accuracy of the algorithm proposed in this paper has increased by 31.26%, 14.21%, 3.05%, and 1.56%, respectively. In addition, the comparison experiment results of SLAM mapping with the original Real-Time Appearance-Based Mapping (RTAB-MAP) algorithm prove that the loop closure detection algorithm based on deep learning proposed in this paper can enable the system to better build a globally consistent map, including more environmental information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小绵羊发布了新的文献求助10
刚刚
长孙巧凡完成签到,获得积分0
1秒前
tramp应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
随遇而安应助科研通管家采纳,获得10
1秒前
tramp应助科研通管家采纳,获得10
1秒前
tramp应助科研通管家采纳,获得10
2秒前
瘦瘦远山完成签到 ,获得积分10
2秒前
4秒前
eazin完成签到 ,获得积分10
4秒前
妙手回春板蓝根完成签到,获得积分10
5秒前
韭菜盒子完成签到,获得积分20
6秒前
魁梧的南莲完成签到,获得积分10
7秒前
yycc完成签到,获得积分10
7秒前
大气夜山完成签到 ,获得积分10
7秒前
悦耳的城完成签到 ,获得积分10
7秒前
是三石啊完成签到 ,获得积分10
8秒前
Accepted完成签到,获得积分10
8秒前
透明的世界应助司徒骁采纳,获得10
8秒前
银月大人完成签到,获得积分20
9秒前
wsl完成签到 ,获得积分10
10秒前
STH完成签到 ,获得积分10
10秒前
失眠的向日葵完成签到 ,获得积分10
11秒前
Allen完成签到,获得积分10
11秒前
15122303完成签到,获得积分10
12秒前
12秒前
犹豫小海豚完成签到,获得积分10
13秒前
WAM完成签到,获得积分20
14秒前
HuFan1201完成签到 ,获得积分10
14秒前
汤沧海完成签到,获得积分10
15秒前
15秒前
lzzk完成签到,获得积分10
16秒前
mg完成签到,获得积分10
16秒前
17秒前
WAM发布了新的文献求助30
18秒前
zhixian完成签到,获得积分10
18秒前
hongw_liu完成签到,获得积分10
18秒前
LM完成签到,获得积分10
19秒前
柚子完成签到 ,获得积分10
20秒前
九九030211发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725519
求助须知:如何正确求助?哪些是违规求助? 3270445
关于积分的说明 9965924
捐赠科研通 2985491
什么是DOI,文献DOI怎么找? 1638024
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747261