摘要
International Journal of Energy ResearchVolume 46, Issue 15 p. 21894-21927 SPECIAL ISSUE REVIEW PAPER P2-type NaxTmO2 oxides as cathodes for non-aqueous sodium-ion batteries—Structural evolution and commercial prospects Debanjana Pahari, Debanjana Pahari orcid.org/0000-0003-4370-1336 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India Research Institute for Sustainable Energy, TCG Centres for Research and Education in Science and Technology, Kolkata, IndiaSearch for more papers by this authorAnanya Kumar, Ananya Kumar orcid.org/0000-0003-3472-902X School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, IndiaSearch for more papers by this authorDhrubajyoti Das, Dhrubajyoti Das orcid.org/0000-0001-6435-3807 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, IndiaSearch for more papers by this authorSreeraj Puravankara, Corresponding Author Sreeraj Puravankara [email protected] orcid.org/0000-0002-9238-0148 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India Correspondence Sreeraj Puravankara, School of Energy Science & Engineering, IIT Kharagpur, Kharagpur 721302, West Bengal, India. Email: [email protected]Search for more papers by this author Debanjana Pahari, Debanjana Pahari orcid.org/0000-0003-4370-1336 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India Research Institute for Sustainable Energy, TCG Centres for Research and Education in Science and Technology, Kolkata, IndiaSearch for more papers by this authorAnanya Kumar, Ananya Kumar orcid.org/0000-0003-3472-902X School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, IndiaSearch for more papers by this authorDhrubajyoti Das, Dhrubajyoti Das orcid.org/0000-0001-6435-3807 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, IndiaSearch for more papers by this authorSreeraj Puravankara, Corresponding Author Sreeraj Puravankara [email protected] orcid.org/0000-0002-9238-0148 School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India Correspondence Sreeraj Puravankara, School of Energy Science & Engineering, IIT Kharagpur, Kharagpur 721302, West Bengal, India. Email: [email protected]Search for more papers by this author First published: 15 August 2022 https://doi.org/10.1002/er.8543 Funding information: Early Career Research, Grant/Award Number: ECR/2016/00 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary First-generation sodium-ion batteries (SIBs) are commercially launched by Faradion Ltd., UK, and HiNa Battery Technology Company Ltd., China, utilizing the transition metal oxide-based cathodes. Currently, the commercial Faradion cells deliver ~1000 cycles at an energy density of ~140 to 150 Wh kg−1, whereas HiNa SIB cells deliver ~120 Wh kg−1. P2-type, O3-type, and composite P-O and P-P type transition metal oxide cathodes have generated much interest in the last few years. P2-type layered oxides are critical as cathodes in achieving higher energy and power density in SIB technology, along with better C-rate capabilities. Compared to their O3-type counterparts, P2-type layered transition metal oxides encounter lower activation energy barriers, enabling improved rate kinetics. However, P2-type cathodes often face poor cycle stability due to undesirable phase changes during charge-discharge cycles and structural instability to air and moisture. This review evaluates all the P2-type layered oxide compounds as SIB cathodes, highlighting the strategies followed to meet the challenges and offers aspects of their successful commercialization. CONFLICT OF INTERESTS The authors declare no known competing financial interests or personal relationships that could have influenced this review article, and there are no conflicts of interests to declare. Open Research DATA AVAILABILITY STATEMENT Data sharing is not applicable to this article as no new data were created or analyzed in this study. REFERENCES 1Kim T, Song W, Son DY, Ono LK, Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A. 2019; 7(7): 2942-2964. doi:10.1039/C8TA10513H 2Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc. 2017; 164(1): A5019-A5025. doi:10.1149/2.0251701jes 3Hakim C, Sabi N, Saadoune I. Mixed structures as a new strategy to develop outstanding oxides-based cathode materials for sodium ion batteries: a review. J Energy Chem. 2021; 61: 47-60. doi:10.1016/j.jechem.2021.02.027 4Tian Y, Zeng G, Rutt A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid Decarbonization. Chem Rev. 2021; 121(3): 1623-1669. doi:10.1021/acs.chemrev.0c00767 5Fan E, Li L, Wang Z, et al. Sustainable recycling Technology for Li-ion Batteries and beyond: challenges and future prospects. Chem Rev. 2020; 120(14): 7020-7063. doi:10.1021/acs.chemrev.9b00535 6Chayambuka K, Mulder G, Danilov DL, Notten PHL. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater. 2020; 10(38): 1-11. doi:10.1002/aenm.202001310 7Abraham KM. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 2020; 5(11): 3544-3547. doi:10.1021/acsenergylett.0c02181 8John B, Anoopkumar V, Mercy TD. Potassium-ion batteries: key to future large-scale energy storage? ACS Appl Energy Mater. 2020; 3(10): 9478-9492. doi:10.1021/acsaem.0c01574 9You C, Wu X, Yuan X, et al. Advances in rechargeable mg batteries. J Mater Chem A. 2020; 8(48): 25601-25625. doi:10.1039/d0ta09330k 10Ji B, He H, Yao W, Tang Y. Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv Mater. 2021; 33(2): 1-21. doi:10.1002/adma.202005501 11Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020; 49(13): 4203-4219. doi:10.1039/c9cs00349e 12Wang Q, Chu S, Guo S. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries. Chinese Chem Lett. 2020; 31(9): 2167-2176. doi:10.1016/j.cclet.2019.12.008 13Yu P, Tang W, Wu FF, et al. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020; 39(9): 1019-1033. doi:10.1007/s12598-020-01443-z 14Zhou T, Han Q, Xie L, Yang X, Zhu L, Cao X. Recent developments and challenges of vanadium oxides (VxOy) cathodes for aqueous zinc-ion batteries. Chem Rec. 2022; 22(4):e202100275. doi:10.1002/tcr.202100275 15Zhou T, Zhu L, Xie L, et al. Cathode materials for aqueous zinc-ion batteries: a mini review. J Colloid Interface Sci. 2022; 605: 828-850. doi:10.1016/j.jcis.2021.07.138 16Shan Y, Li Y, Pang H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv Funct Mater. 2020; 30:2001298. doi:10.1002/adfm.202001298 17Xiao J, Li X, Tang K, et al. Recent progress of emerging cathode materials for sodium ion batteries. Mater Chem Front. 2021; 5(10): 3735-3764. doi:10.1039/d1qm00179e 18Fang C, Huang Y, Zhang W, et al. Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater. 2016; 6(5):1501727. doi:10.1002/aenm.201501727 19Ge J, Fan L, Rao AM, Zhou J, Lu B. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain. 2022; 5(3): 225-234. doi:10.1038/s41893-021-00810-7 20Wang MY, Zhao XX, Guo JZ, et al. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3−x(P2O7)x cathode material. Green Energy Environ. 2022; 7(4):763-771. doi:10.1016/j.gee.2020.11.026 21Li SF, Gu ZY, Guo JZ, et al. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries. J Mater Sci Technol. 2021; 78: 176-182. doi:10.1016/j.jmst.2020.10.047 22Gu ZY, Guo JZ, Cao JM, et al. An advanced high-entropy Fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater. 2022; 34(14): 1-10. doi:10.1002/adma.202110108 23Luo XX, Li WH, Liang HJ, et al. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew Chemie—Int Ed. 2022; 61(10):e202117661. doi:10.1002/anie.202117661 24Han MH, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energ Environ Sci. 2015; 8(1): 81-102. doi:10.1039/c4ee03192j 25Wang PF, You Y, Yin YX, Guo YG. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv Energy Mater. 2018; 8(8): 1-23. doi:10.1002/aenm.201701912 26Molenda J, Delmas C, Hagenmuller P. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ionics. 1983; 9–10(PART 1): 431-435. doi:10.1016/0167-2738(83)90271-0 27Raistrick ID, Huggins RA. An electrochemical study of the mixed Beta-vanadium bronzes LiyNaxV205 and LiyKxV205. Mater Res Bull. 1983; 18(3): 337-346. doi:10.1016/0025-5408(83)90121-6 28Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite. Solid State Ion. 1988; 28–30: 1172-1175. doi:10.1016/0167-2738(88)90351-7 29Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energ Environ Sci. 2017; 10(5): 1051-1074. doi:10.1039/c7ee00566k 30Liu Q, Hu Z, Li W, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energ Environ Sci. 2021; 14(1): 158-179. doi:10.1039/d0ee02997a 31Wu X, Xu GL, Zhong G, et al. Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Appl Mater Interfaces. 2016; 8(34): 22227-22237. doi:10.1021/acsami.6b06701 32Xie Q, Li W, Manthiram A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density li-ion batteries. Chem Mater. 2019; 31(3): 938-946. doi:10.1021/acs.chemmater.8b03900 33Zhang L, Wang C, Liu Y, et al. Suppressing interlayer-gliding and Jahn-teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chem Eng J. 2021; 426(June):130813. doi:10.1016/j.cej.2021.130813 34Park WB, Nathan MGT, Han SC, Lee JW, Sohn KS, Pyo M. Aliovalent-doped sodium chromium oxide (Na0.9Cr0.9Sn0.1O2 and Na0.8Cr0.9Sb0.1O2) for sodium-ion battery cathodes with high-voltage characteristics. RSC Adv. 2020; 10(71): 43273-43281. doi:10.1039/d0ra08332a 35Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides. Phys B+C. 1980; 99(1–4): 81-85. doi:10.1016/0378-4363(80)90214-4 36Xu J, Lee DH, Clement R, et al. Identifying the critical role of Li substitution in P2-Nax(LiyNixMn1−y−z)O2(0 less than x, y, z less than 1) intercalation cathode materials for high energy Na-ion batteries. Chem Mater. 2014; 26: 1260-1269. 37Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater. 2012; 11(6): 512-517. doi:10.1038/nmat3309 38Somerville JW, Sobkowiak A, Tapia-Ruiz N, et al. Nature of the '"Z"'-phase in layered Na-ion battery cathodes. Energy Environ Sci. 2019; 12: 2223-2232. doi:10.5287/bodleian 39Singh G, López Del Amo JM, Galceran M, Pérez-Villar S, Rojo T. Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2. J Mater Chem A. 2015; 3(13): 6954-6961. doi:10.1039/c4ta06360k 40Li X, Wang Y, Wu D, Liu L, Bo SH, Ceder G. Jahn-teller assisted Na diffusion for high performance Na ion batteries. Chem Mater. 2016; 28(18): 6575-6583. doi:10.1021/acs.chemmater.6b02440 41Talaie E, Duffort V, Smith HL, Fultz B, Nazar LF. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energ Environ Sci. 2015; 8(8): 2512-2523. doi:10.1039/c5ee01365h 42Didier C, Guignard M, Denage C, et al. Electrochemical Na-deintercalation from NaVO2. Electrochem Solid St. 2011; 14(5): 1-5. doi:10.1149/1.3555102 43Hamani D, Ati M, Tarascon JM, Rozier P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem Commun. 2011; 13(9): 938-941. doi:10.1016/j.elecom.2011.06.005 44Guignard M, Didier C, Darriet J, Bordet P, Elkaïm E, Delmas C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat Mater. 2013; 12(1): 74-80. doi:10.1038/nmat3478 45Didier C, Guignard M, Darriet J, Delmas C. O′3−NaxVO2 system: a superstructure for Na1/2VO2. Inorg Chem. 2012; 51(20): 11007-11016. doi:10.1021/ic301505e 46Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem. 1985; 57(3): 323-331. doi:10.1016/0022-4596(85)90194-X 47Molenda J, Stokłosa A, Than D. Relation between ionic and electronic defects of Na0.7MnO2 bronze and its electrochemical properties. Solid State Ion. 1987; 24(1): 33-38. doi:10.1016/0167-2738(87)90064-6 48Paulsen JM, Dahn JR. Studies of the layered manganese bronzes, Na2/3[Mn1−xmx]O2 with M=Co, Ni, Li, and [Mn1−xmx]O2 prepared by ion-exchange. Solid State Ion. 1999; 126: 3-24. doi:10.1016/S0167-2738(99)00147-2 49Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J Mater Chem. 2002; 12(4): 1142-1147. doi:10.1039/b108830k 50Su D, Wang C, Ahn HJ, Wang G. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem—A Eur J. 2013; 19(33): 10884-10889. doi:10.1002/chem.201301563 51Ge P, Fouletier M. Electrochemical intercalation of sodium in NaxCoO2 BRONZES. Solid State Ion. 1988; 28–30(PART 2): 1172-1175. doi:10.1016/0167-2738(88)90351-7 52Shacklette LW, Jew TR, Townsend L. Rechargeable electrodes from sodium cobalt bronzes. J Electrochem Soc. 1985; 135(11): 2669-2674. doi:10.1149/1.2095407 53Ma Y, Doeff MM, Visco SJ, De Jonghe LC. Rechargeable Na/NaxCoO2 and Na15Pb4/NaxCoO2 polymer electrolyte cells. J Electrochem Soc. 1993; 140(10): 35-43. https://escholarship.org/uc/item/7cr1x176 54Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL. Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun. 2001; 3(11): 639-642. doi:10.1016/S1388-2481(01)00244-2 55Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat Mater. 2011; 10(1): 74-80. doi:10.1038/nmat2920 56Bhide A, Hariharan K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ion. 2011; 192(1): 360-363. doi:10.1016/j.ssi.2010.04.022 57D'Arienzo M, Ruffo R, Scotti R, Morazzoni F, Mari CM, Polizzi S. Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Phys Chem Chem Phys. 2012; 14(17): 5945-5952. doi:10.1039/c2cp40699c 58Ding JJ, Zhou YN, Sun Q, Yu XQ, Yang XQ, Fu ZW. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim Acta. 2013; 87: 388-393. doi:10.1016/j.electacta.2012.09.058 59Rai AK, Anh LT, Gim J, Mathew V, Kim J. Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries. Ceram Int. 2014; 40(1 PART B): 2411-2417. doi:10.1016/j.ceramint.2013.08.013 60Pang WK, Kalluri S, Peterson VK, et al. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem Mater. 2015; 27(8): 3150-3158. doi:10.1021/acs.chemmater.5b00943 61Sharma N, Han MH, Pramudita JC, Gonzalo E, Brand HEA, Rojo T. A comprehensive picture of the current rate dependence of the structural evolution of P2-Na2/3Fe2/3Mn1/3O2. J Mater Chem A. 2015; 3(42): 21023-21038. doi:10.1039/c5ta04976h 62Birgisson S, Christiansen TL, Iversen BB. Exploration of phase compositions, crystal structures, and electrochemical properties of NaxFeyMn1−yO2 sodium ion battery materials. Chem Mater. 2018; 30(19): 6636-6645. doi:10.1021/acs.chemmater.8b01566 63Li Y, Gao Y, Wang X, et al. Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy. 2018; 47(March): 519-526. doi:10.1016/j.nanoen.2018.03.007 64Duffort V, Talaie E, Black R, Nazar LF. Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions. Chem Mater. 2015; 27(7): 2515-2524. doi:10.1021/acs.chemmater.5b00097 65Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S. Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J Mater Chem A. 2014; 2(33): 13415-13421. doi:10.1039/c4ta02627f 66Zhou D, Guo X, Zhang Q, et al. Nickel-based materials for advanced rechargeable batteries. Adv Funct Mater. 2022; 32(12): 1-35. doi:10.1002/adfm.202107928 67Lu Z, Donaberger RA, Dahn JR. Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and O3 structures. Chem Mater. 2000; 12(12): 3583-3590. doi:10.1021/cm000359m 68Lu Z, Dahn JR. In situ X-ray diffraction study of P2-Na2/3Ni1/3Mn2/3O2. J Electrochem Soc. 2001; 148(11):A1225. doi:10.1149/1.1407247 69Lee DH, Xu J, Meng YS. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys. 2013; 15(9): 3304-3312. doi:10.1039/c2cp44467d 70Meng YS, Hinuma Y, Ceder G. An investigation of the sodium patterning in NaxCoO2 (0.5 ≤ x ≤ 1) by density functional theory methods. J Chem Phys. 2008; 128(10):104708. doi:10.1063/1.2839292 71Wang H, Yang B, Liao XZ, et al. Electrochemical properties of P2-Na2/3[Ni1/3Mn 2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim Acta. 2013; 113: 200-204. doi:10.1016/j.electacta.2013.09.098 72Lee SY, Kim JH, Kang YC. Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries. Electrochim Acta. 2017; 225: 86-92. doi:10.1016/j.electacta.2016.11.141 73Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L. Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem—An Asian J. 2015; 10(3): 661-666. doi:10.1002/asia.201403134 74Manikandan P, Ramasubramonian D, Shaijumon MM. Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries. Electrochim Acta. 2016; 206: 199-206. doi:10.1016/j.electacta.2016.04.138 75Yang J, Yuan T, Guo B, et al. Precise preparation of layered Na0.5Ni0.25Mn0.75O2 micro-sheets for 3.8 v Na-ion batteries. Chem Commun. 2017; 53(65): 9117-9120. doi:10.1039/c7cc04328g 76Choi JU, Yoon CS, Zhang Q, et al. Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. J Mater Chem A. 2019; 7(1): 202-211. doi:10.1039/c8ta08796b 77Gutierrez A, Dose WM, Borkiewicz O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries. J Phys Chem C. 2018; 122(41): 23251-23260. doi:10.1021/acs.jpcc.8b05537 78Zhang J, Wang W, Wang W, Wang S, Li B. Comprehensive review of P2-type Na2/3Ni1/3Mn2/3O2, a potential cathode for practical application of Na-ion batteries. ACS Appl Mater Interfaces. 2019; 11: 22051-22066. doi:10.1021/acsami.9b03937 79Zheng X, Li P, Zhu H, et al. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater. 2018; 15(March): 257-265. doi:10.1016/j.ensm.2018.05.001 80Carlier D, Cheng JH, Berthelot R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. J Chem Soc Dalt Trans. 2011; 40(36): 9306-9312. doi:10.1039/c1dt10798d 81Bucher N, Hartung S, Gocheva I, Cheah YL, Srinivasan M, Hoster HE. Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries. J Solid State Electrochem. 2013; 17(7): 1923-1929. doi:10.1007/s10008-013-2047-x 82Wang X, Tamaru M, Okubo M, Yamada A. Electrode properties of P2-Na2/3MnyCo1−yO2 as cathode materials for sodium-ion batteries. J Phys Chem C. 2013; 117(30): 15545-15551. doi:10.1021/jp406433z 83Bucher N, Hartung S, Franklin JB, et al. P2-NaxCoyMn1−yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries - effects of doping and morphology to enhance cycling stability. Chem Mater. 2016; 28(7): 2041-2051. doi:10.1021/acs.chemmater.5b04557 84Zhu YE, Qi X, Chen X, et al. A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A. 2016; 4(28): 11103-11109. doi:10.1039/c6ta02845d 85Hemalatha K, Jayakumar M, Prakash AS. Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67Mn:XCo1−xO2 cathodes for sodium-ion batteries. Dalt Trans. 2018; 47(4): 1223-1232. doi:10.1039/c7dt04372d 86Gao G, Tie D, Ma H, et al. Interface-rich mixed P2 + T phase NaxCo0.1Mn0.9O2(0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A. 2018; 6(15): 6675-6684. doi:10.1039/c8ta00206a 87Kwon MS, Lim SG, Park Y, et al. P2 orthorhombic Na0.7[Mn1−xLix]O2+y as cathode materials for Na-ion batteries. ACS Appl Mater Interfaces. 2017; 9(17): 14758-14768. doi:10.1021/acsami.7b00058 88Zhang K, Kim D, Hu Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries. Nat Commun. 2019; 10(1): 1-12. doi:10.1038/s41467-018-07646-4 89Chen X, Li N, Kedzie E, McCloskey BD, Tang H, Tong W. High-capacity P2-type NaxLi0.25Mn0.75O2 cathode enabled by anionic oxygen redox. J Electrochem Soc. 2019; 166(16): A4136-A4140. doi:10.1149/2.0611916jes 90Pang WL, Zhang XH, Guo JZ, et al. P2-type Na2/3Mn1−xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sources. 2017; 356: 80-88. doi:10.1016/j.jpowsour.2017.04.076 91Liu X, Zhong G, Xiao Z, et al. Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy. 2020; 76(March):104997. doi:10.1016/j.nanoen.2020.104997 92Bai X, Sathiya M, Mendoza-Sánchez B, et al. Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv Energy Mater. 2018; 8(32): 1-12. doi:10.1002/aenm.201802379 93Wang Y, Wang L, et al. Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2 O2 transition for stable sodium ion storage. Adv Funct Mater. 2020; 30:1910327. doi:10.1002/adfm.201910327 94Billaud J, Singh G, Armstrong AR, et al. Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci. 2014; 7(4): 1387-1391. doi:10.1039/c4ee00465e 95Yabuuchi N, Hara R, Kubota K, Paulsen J, Kumakura S, Komaba S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J Mater Chem A. 2014; 2(40): 16851-16855. doi:10.1039/c4ta04351k 96Sharma N, Tapia-Ruiz N, Singh G, et al. Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem Mater. 2015; 27(20): 6976-6986. doi:10.1021/acs.chemmater.5b02142 97Clément RJ, Billaud J, Robert Armstrong A, et al. Structurally stable mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energ Environ Sci. 2016; 9(10): 3240-3251. doi:10.1039/c6ee01750a 98Yu H, Ren Y, Xiao D, et al. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew Chemie—Int Ed. 2014; 53(34): 8963-8969. doi:10.1002/anie.201404549 99Wang Y, Xiao R, Hu YS, Avdeev M, Chen L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun. 2015; 6: 1-9. doi:10.1038/ncomms7954 100Thorne JS, Dunlap RA, Obrovac MN. Investigation of P2-Na 2/3 Mn 1/3 Fe 1/3 co 1/3 O 2 for Na-ion battery positive electrodes. J Electrochem Soc. 2014; 161(14): A2232-A2236. doi:10.1149/2.0981414jes 101Jung YH, Christiansen AS, Johnsen RE, Norby P, Kim DK. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation. Adv Funct Mater. 2015; 25(21): 3227-3237. doi:10.1002/adfm.201500469 102Liu L, Li X, Bo SH, et al. High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Adv Energy Mater. 2015; 5(22): 1-5. doi:10.1002/aenm.201500944 103Talaie E, Kim SY, Chen N, Nazar LF. Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2. Chem Mater. 2017; 29(16): 6684-6697. doi:10.1021/acs.chemmater.7b01146 104Yang L, Li X, Liu J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J Am Chem Soc. 2019; 141(16): 6680-6689. doi:10.1021/jacs.9b01855 105Yoshida J, Guerin E, Arnault M, et al. New P—Na0.70Mn0.60 Ni0.30Co0.10O2 layered oxide as electrode material for Na-ion batteries. J Electrochem Soc. 2014; 161(14): A1987-A1991. doi:10.1149/2.0121414jes 106Chagas LG, Buchholz D, Vaalma C, Wuab L, Passerini S. P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. J Mater Chem A. 2014; 2(47): 20263-20270. doi:10.1039/c4ta03946g 107Doubaji S, Valvo M, Saadoune I, Dahbi M, Edström K. Synthesis and characterization of a new layered cathode material for sodium ion batteries. J Power Sources. 2014; 266: 275-281. doi:10.1016/j.jpowsour.2014.05.042 108Kataoka R, Mukai T, Yoshizawa A, Inoue K, Kiyobayashi T, Sakai T. High capacity positive electrode material for room temperature Na ion battery: Na x Mn 2/3 co 1/6 Ni 1/6 O2. J Electrochem Soc. 2015; 162(4): A553-A558. doi:10.1149/2.0181504jes 109Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X. Unveiling the role of co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3−xCoxO2 cathode materials for sodium-ion batteries. ACS Appl Mater Interfaces. 2016; 8(24): 15439-15448. doi:10.1021/acsami.6b04073 110Yu TY, Hwang JY, Aurbach D, Sun YK. Microsphere Na0.65[Ni0.17Co0.11Mn0.72]O2 cathode material for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2017; 9(51): 44534-44541. doi:10.1021/acsami.7b15267 111Hou P, Sun Y, Li F, et al. A high energy-density P2-Na 2/3 [Ni0.3Co0.1Mn0.6]O2 cathode with mitigated P2-O2 transition for sodium-ion batteries. Nanoscale. 2019; 11(6): 2787-2794. doi:10.1039/c8nr09601e 112Singh G, Tapia-Ruiz N, Lopez Del Amo JM, et al. High voltage mg-doped Na0.67Ni0.3−xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem Mater. 2016; 28(14): 5087-5094. doi:10.1021/acs.chemmater.6b01935 113Wang P-F, You Y, Yin Y-X, et al. Suppressing the P2-O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries. Angew Chem. 2016; 128(26): 7571-7575. doi:10.1002/ange.201602202 114Tapia-Ruiz N, Dose WM, Sharma N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-: XMgxMn2/3O2 (0 ≤ x ≤ 0.2) cathodes from diffraction, electrochemical and ab initio studies. Energy. Environ Sci. 2018; 11(6): 1470-1479. doi:10.1039/c7ee02995k 115Wang QC, Meng JK, Yue XY, et al. Tuning P2-structured cathode material by Na-site mg substitution for Na-ion batteries. J Am Chem Soc. 2019; 141(2): 840-848. doi:10.1021/jacs.8b08638 116Kim D, Kang SH, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater. 2011; 1(3): 333-336. doi:10.1002/aenm.201000061 117Hasa I, Buchholz D, Passerini S, Hassoun J. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. ACS Appl Mater Interfaces. 2015; 7(9): 5206-5212. doi:10.1021/am5080437 118Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3−xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem Commun. 2014; 50(28): 3677-3680. doi:10.1039/c3cc49856e 119Zhao W, Tanaka A, Momosaki K, et al. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries. Electrochim Acta. 2015; 170: 171-181. doi:10.1016/j.electacta.2015.04.125 120Pahari D, Puravankara S. On controlling the P2-O2 phase transition by optimal Ti-substitution on Ni- site in P2-type Na0.67Ni0.33Mn0.67O2 (NNMO) cathode for Na-ion batteries. J Power Sources. 2020; 455(March):227957. doi:10.1016/j.jpowsour.2020.227957 121Wu X, Guo J, Wang D, Zhong G, McDonald MJ, Yang Y. P2-type Na0.66Ni0.33−xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J Power Sources. 2015; 281: 18-26. doi:10.1016/j.jpowsour.2014.12.083 122Zheng