亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clot-based radiomics model for cardioembolic stroke prediction with CT imaging before recanalization: a multicenter study

医学 神经组阅片室 无线电技术 放射性武器 冲程(发动机) 放射科 血栓 回顾性队列研究 溶栓 磁共振成像 曲线下面积 内科学 神经学 心肌梗塞 工程类 精神科 机械工程
作者
Jingxuan Jiang,Jianyong Wei,Yueqi Zhu,Liming Wei,Xiaoer Wei,Hao Tian,Lei Zhang,Tianle Wang,Yue Cheng,Qianqian Zhao,Zheng Sun,Haiyan Du,Yu Huang,Hui Liu,Yuehua Li
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (2): 970-980 被引量:30
标识
DOI:10.1007/s00330-022-09116-4
摘要

ObjectivesTo develop a clot-based radiomics model using CT imaging radiomic features and machine learning to identify cardioembolic (CE) stroke before mechanical thrombectomy (MTB) in patients with acute ischemic stroke (AIS).Materials and methodsThis retrospective four-center study consecutively included 403 patients with AIS who sequentially underwent CT and MTB between April 2016 and July 2021. These were grouped into training, testing, and external validation cohorts. Thrombus-extracted radiomic features and basic information were gathered to construct a machine learning model to predict CE stroke. The radiological characteristics and basic information were used to build a routine radiological model. A combined radiomics and radiological features model was also developed. The performances of all models were evaluated and compared in the validation cohort. A histological analysis helped further assess the proposed model in all patients.ResultsThe radiomics model yielded an area under the curve (AUC) of 0.838 (95% confidence interval [CI], 0.771–0.891) for predicting CE stroke in the validation cohort, significantly higher than the radiological model (AUC, 0.713; 95% CI, 0.636–0.781; p = 0.007) but similar to the combined model (AUC, 0.855; 95% CI, 0.791–0.906; p = 0.14). The thrombus radiomic features achieved stronger correlations with red blood cells (|rmax|, 0.74 vs. 0.32) and fibrin and platelet (|rmax|, 0.68 vs. 0.18) than radiological characteristics.ConclusionThe proposed CT-based radiomics model could reliably predict CE stroke in AIS, performing better than the routine radiological method.Key Points • Admission CT imaging could offer valuable information to identify the acute ischemic stroke source by radiomics analysis. • The proposed CT imaging–based radiomics model yielded a higher area under the curve (0.838) than the routine radiological method (0.713; p = 0.007). • Several radiomic features showed significantly stronger correlations with two main thrombus constituents (red blood cells, |r max |, 0.74; fibrin and platelet, |r max |, 0.68) than routine radiological characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
雨城完成签到 ,获得积分10
25秒前
mrjohn完成签到,获得积分0
38秒前
49秒前
丘比特应助doublenine18采纳,获得30
53秒前
wwww威完成签到,获得积分10
1分钟前
YHF2发布了新的文献求助10
1分钟前
YHF2完成签到,获得积分10
1分钟前
1分钟前
doublenine18发布了新的文献求助30
1分钟前
1分钟前
李丹阳完成签到,获得积分10
2分钟前
Criminology34举报zz求助涉嫌违规
2分钟前
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI6应助风华正茂采纳,获得10
2分钟前
2分钟前
橘橘橘子皮完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
布吉岛呀完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
风华正茂发布了新的文献求助10
3分钟前
deng203完成签到,获得积分10
3分钟前
4分钟前
Bin_Liu完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
潘小嘎完成签到 ,获得积分10
4分钟前
sswy完成签到 ,获得积分10
4分钟前
5分钟前
神明完成签到 ,获得积分10
5分钟前
5分钟前
WW完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639678
求助须知:如何正确求助?哪些是违规求助? 4749674
关于积分的说明 15007074
捐赠科研通 4797837
什么是DOI,文献DOI怎么找? 2563943
邀请新用户注册赠送积分活动 1522817
关于科研通互助平台的介绍 1482514