Fast and accurate reconstruction of large-scale 3D porous media using deep learning

多孔介质 深度学习 卷积神经网络 人工智能 计算机科学 比例(比率) 迭代重建 算法 人工神经网络 重建算法 多孔性 材料科学 物理 量子力学 复合材料
作者
HouLin Zhang,Hao Yu,Siwei Meng,MengCheng Huang,Marembo Micheal,Jian Su,He Li,HengAn Wu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:217: 110937-110937 被引量:12
标识
DOI:10.1016/j.petrol.2022.110937
摘要

The accurate and efficient reconstruction of the porous media is the fundamental link to revealing its structural features and physical properties. In this work, we propose a deep learning (DL)-based algorithm to reconstruct large-scale three-dimensional (3D) porous media that can be treated as the representative element volumes (REVs), based on generative adversarial networks (GAN) and convolutional neural networks (CNN), named LGCNN. The proposed framework consists of a machine learning based (ML-based) reconstruction method for small-scale porous media and an adjustable splicing algorithm to achieve the REVs reconstruction. On this basis, four special neural networks are established to reconstruct the porous media and ensure the connectivity between the adjacent porous media during the splicing process. Subsequently, the detailed validation of LGCNN against traditional reconstruction methods and other deep learning algorithms is performed. The results show that the reconstruction speed (6003 voxels) of LGCNN (10 min) is much faster than traditional numerical reconstruction methods including QSGS (642 min), CCSIM (5973 min), and SD (33,628 min) with higher accuracy on structural parameters (e.g., porosity and pore size distribution), when compared with real porous media. In particular, the size of constructed porous media is far larger than previous ML-based reconstruction algorithms as much as 3–4 orders of magnitude, indicating the puissant ability of LGCNN to be used for high-resolution or multi-scale reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小云发布了新的文献求助10
刚刚
稻子完成签到 ,获得积分10
刚刚
1秒前
桐桐应助哈哈哈哈哈采纳,获得10
1秒前
1秒前
annananana发布了新的文献求助50
1秒前
1秒前
积极盼山完成签到,获得积分10
1秒前
1秒前
充电宝应助coco采纳,获得10
2秒前
2秒前
2秒前
超级水壶发布了新的文献求助10
3秒前
上官若男应助张宇豪采纳,获得10
4秒前
Tristan发布了新的文献求助10
4秒前
4秒前
123关闭了123文献求助
4秒前
安详靖巧发布了新的文献求助10
5秒前
5秒前
ZC发布了新的文献求助10
6秒前
万能图书馆应助Lutras采纳,获得10
6秒前
灵巧灵萱完成签到,获得积分20
6秒前
维尼熊完成签到 ,获得积分10
8秒前
8秒前
abab发布了新的文献求助10
8秒前
吃梨发布了新的文献求助10
8秒前
lixiniverson发布了新的文献求助10
9秒前
9秒前
33完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
微光发布了新的文献求助10
9秒前
科目三应助TFboy采纳,获得10
9秒前
xxx完成签到,获得积分10
9秒前
9秒前
11秒前
Jared应助Cica采纳,获得10
11秒前
万能图书馆应助扶苏采纳,获得10
11秒前
11秒前
左南风完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688