Fast and accurate reconstruction of large-scale 3D porous media using deep learning

多孔介质 深度学习 卷积神经网络 人工智能 计算机科学 比例(比率) 迭代重建 算法 人工神经网络 重建算法 多孔性 材料科学 物理 量子力学 复合材料
作者
HouLin Zhang,Hao Yu,Siwei Meng,MengCheng Huang,Marembo Micheal,Jian Su,He Li,HengAn Wu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:217: 110937-110937 被引量:12
标识
DOI:10.1016/j.petrol.2022.110937
摘要

The accurate and efficient reconstruction of the porous media is the fundamental link to revealing its structural features and physical properties. In this work, we propose a deep learning (DL)-based algorithm to reconstruct large-scale three-dimensional (3D) porous media that can be treated as the representative element volumes (REVs), based on generative adversarial networks (GAN) and convolutional neural networks (CNN), named LGCNN. The proposed framework consists of a machine learning based (ML-based) reconstruction method for small-scale porous media and an adjustable splicing algorithm to achieve the REVs reconstruction. On this basis, four special neural networks are established to reconstruct the porous media and ensure the connectivity between the adjacent porous media during the splicing process. Subsequently, the detailed validation of LGCNN against traditional reconstruction methods and other deep learning algorithms is performed. The results show that the reconstruction speed (6003 voxels) of LGCNN (10 min) is much faster than traditional numerical reconstruction methods including QSGS (642 min), CCSIM (5973 min), and SD (33,628 min) with higher accuracy on structural parameters (e.g., porosity and pore size distribution), when compared with real porous media. In particular, the size of constructed porous media is far larger than previous ML-based reconstruction algorithms as much as 3–4 orders of magnitude, indicating the puissant ability of LGCNN to be used for high-resolution or multi-scale reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roger完成签到,获得积分10
1秒前
科研蜗牛完成签到,获得积分10
1秒前
abcd_1067完成签到,获得积分10
3秒前
cici完成签到 ,获得积分10
4秒前
王金娥完成签到,获得积分10
8秒前
8秒前
Urusaiina完成签到,获得积分10
9秒前
用行舍藏完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
旺仔同学完成签到,获得积分10
13秒前
bkagyin应助窗外风雨阑珊采纳,获得10
13秒前
99发布了新的文献求助10
15秒前
aikeyan完成签到 ,获得积分10
15秒前
灰灰发布了新的文献求助10
16秒前
文6完成签到 ,获得积分10
18秒前
苏信怜完成签到,获得积分10
19秒前
细心的安双完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
Fiona完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
沉静胜完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
arniu2008应助科研通管家采纳,获得10
21秒前
小药童应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
22秒前
Yangyang完成签到,获得积分10
22秒前
小玉完成签到,获得积分10
22秒前
倪好完成签到,获得积分10
22秒前
LL完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071