Fast and accurate reconstruction of large-scale 3D porous media using deep learning

多孔介质 深度学习 卷积神经网络 人工智能 计算机科学 比例(比率) 迭代重建 算法 人工神经网络 重建算法 多孔性 材料科学 物理 量子力学 复合材料
作者
HouLin Zhang,Hao Yu,Siwei Meng,MengCheng Huang,Marembo Micheal,Jian Su,He Li,HengAn Wu
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:217: 110937-110937 被引量:12
标识
DOI:10.1016/j.petrol.2022.110937
摘要

The accurate and efficient reconstruction of the porous media is the fundamental link to revealing its structural features and physical properties. In this work, we propose a deep learning (DL)-based algorithm to reconstruct large-scale three-dimensional (3D) porous media that can be treated as the representative element volumes (REVs), based on generative adversarial networks (GAN) and convolutional neural networks (CNN), named LGCNN. The proposed framework consists of a machine learning based (ML-based) reconstruction method for small-scale porous media and an adjustable splicing algorithm to achieve the REVs reconstruction. On this basis, four special neural networks are established to reconstruct the porous media and ensure the connectivity between the adjacent porous media during the splicing process. Subsequently, the detailed validation of LGCNN against traditional reconstruction methods and other deep learning algorithms is performed. The results show that the reconstruction speed (6003 voxels) of LGCNN (10 min) is much faster than traditional numerical reconstruction methods including QSGS (642 min), CCSIM (5973 min), and SD (33,628 min) with higher accuracy on structural parameters (e.g., porosity and pore size distribution), when compared with real porous media. In particular, the size of constructed porous media is far larger than previous ML-based reconstruction algorithms as much as 3–4 orders of magnitude, indicating the puissant ability of LGCNN to be used for high-resolution or multi-scale reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lululala完成签到 ,获得积分10
1秒前
chixueqi完成签到,获得积分10
1秒前
思源应助浅风采纳,获得10
3秒前
5秒前
阳阳完成签到,获得积分10
6秒前
小杭76应助英勇的初柔采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
雷家发布了新的文献求助10
12秒前
14秒前
15秒前
gc发布了新的文献求助10
16秒前
17秒前
ding应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得30
18秒前
WB87应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
加菲丰丰应助科研通管家采纳,获得20
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
柏林寒冬应助科研通管家采纳,获得10
18秒前
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18秒前
乌萨奇应助科研通管家采纳,获得40
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
19秒前
柏林寒冬应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
WB87应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得40
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539399
关于积分的说明 14167889
捐赠科研通 4456910
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740