A small-amplitude hunting motion recognition method based on transfer learning

火车 运动(物理) 计算机科学 学习迁移 过程(计算) 人工智能 振幅 任务(项目管理) 领域(数学分析) 频域 时域 理论(学习稳定性) 计算机视觉 模拟 机器学习 工程类 数学 地理 数学分析 物理 地图学 系统工程 量子力学 操作系统
作者
Duoying Wang,Ning Jing,Fei Zhao,Yanping Li,Chunjun Chen
出处
期刊:Journal of Vibration and Control [SAGE]
卷期号:29 (19-20): 4384-4395 被引量:7
标识
DOI:10.1177/10775463221117056
摘要

The hunting motion of the vehicle increases the wear of the wheel tracks and affects the lateral stability of the vehicle system and safety, so the hunting motion of the vehicle needs to be recognized. However, the existing recognition methods ignore the small-amplitude hunting motion that precedes the onset of the running motion. In addition, due to the scarcity of real hunting data of high-speed trains, there is a problem of underfitting when training with traditional deep learning methods. In this paper, first, the dynamics model of a high-speed train is established, and the normal, small-amplitude hunting and hunting motions of high-speed trains in the process are simulated. Second, this paper proposes a transfer learning-based method for high-speed train hunting motion recognition. The method uses easily collected normal data samples in the training process, does not use real data samples of small-amplitude hunting and hunting motions, and completes the high-speed train running motions recognition task by transferring from simulation data (source domain) to real data (target domain). Finally, the validation is carried out using the real data, which proves that the method-related approach has some engineering application value in the intelligent monitoring of high-speed trains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huzhu应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
多边形完成签到 ,获得积分10
1秒前
头哥应助科研通管家采纳,获得10
1秒前
1秒前
Rookie应助科研通管家采纳,获得10
1秒前
Wefaily应助科研通管家采纳,获得50
1秒前
1秒前
南宫应助科研通管家采纳,获得10
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
zoe完成签到,获得积分10
2秒前
滴答滴完成签到 ,获得积分10
2秒前
dtcao完成签到,获得积分20
2秒前
笨笨的外套完成签到,获得积分10
3秒前
缓慢的王完成签到,获得积分10
4秒前
周一一完成签到,获得积分10
4秒前
Libra完成签到,获得积分10
4秒前
4秒前
一一完成签到,获得积分10
4秒前
5秒前
执着黑米完成签到 ,获得积分10
5秒前
5秒前
浪费完成签到 ,获得积分10
5秒前
6秒前
嘎嘎完成签到,获得积分20
6秒前
Jackson_Cai完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
天天下文献完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883