火车
运动(物理)
计算机科学
学习迁移
过程(计算)
人工智能
振幅
任务(项目管理)
领域(数学分析)
频域
时域
理论(学习稳定性)
计算机视觉
模拟
机器学习
工程类
数学
地理
操作系统
物理
数学分析
量子力学
地图学
系统工程
作者
Duoying Wang,Ning Jing,Fei Zhao,Yanping Li,Chunjun Chen
标识
DOI:10.1177/10775463221117056
摘要
The hunting motion of the vehicle increases the wear of the wheel tracks and affects the lateral stability of the vehicle system and safety, so the hunting motion of the vehicle needs to be recognized. However, the existing recognition methods ignore the small-amplitude hunting motion that precedes the onset of the running motion. In addition, due to the scarcity of real hunting data of high-speed trains, there is a problem of underfitting when training with traditional deep learning methods. In this paper, first, the dynamics model of a high-speed train is established, and the normal, small-amplitude hunting and hunting motions of high-speed trains in the process are simulated. Second, this paper proposes a transfer learning-based method for high-speed train hunting motion recognition. The method uses easily collected normal data samples in the training process, does not use real data samples of small-amplitude hunting and hunting motions, and completes the high-speed train running motions recognition task by transferring from simulation data (source domain) to real data (target domain). Finally, the validation is carried out using the real data, which proves that the method-related approach has some engineering application value in the intelligent monitoring of high-speed trains.
科研通智能强力驱动
Strongly Powered by AbleSci AI