Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier BV]
卷期号:200: 104781-104781 被引量:24
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经我是不爱喝水关注了科研通微信公众号
刚刚
700w完成签到 ,获得积分0
刚刚
CodeCraft应助apwi采纳,获得10
刚刚
刚刚
1秒前
幸福飞荷发布了新的文献求助10
2秒前
踏雪寻梅发布了新的文献求助10
2秒前
卤化氢完成签到 ,获得积分10
2秒前
化工人发布了新的文献求助10
2秒前
何处芳歇完成签到,获得积分10
3秒前
kitsch完成签到,获得积分10
3秒前
3秒前
bitter发布了新的文献求助10
3秒前
4秒前
山山完成签到,获得积分10
4秒前
落阳发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
带头大哥应助一丢丢采纳,获得200
7秒前
荷叶边边头完成签到,获得积分10
8秒前
8秒前
9秒前
精明人雄发布了新的文献求助10
12秒前
梨花诗发布了新的文献求助10
12秒前
清脆的安筠关注了科研通微信公众号
13秒前
化工人完成签到,获得积分10
14秒前
默默千亦完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
一路高飛完成签到,获得积分10
16秒前
共享精神应助凯旋预言采纳,获得10
16秒前
shuangshuang完成签到 ,获得积分10
17秒前
领导范儿应助朴实薯片采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
自然醒发布了新的文献求助10
19秒前
20秒前
20秒前
Solar energy完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608502
求助须知:如何正确求助?哪些是违规求助? 4015039
关于积分的说明 12432049
捐赠科研通 3696238
什么是DOI,文献DOI怎么找? 2037918
邀请新用户注册赠送积分活动 1071004
科研通“疑难数据库(出版商)”最低求助积分说明 954900