亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:29
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏敏9813完成签到,获得积分10
28秒前
满天都是大萌德关注了科研通微信公众号
28秒前
胖小羊完成签到 ,获得积分10
33秒前
Ccccn完成签到,获得积分10
47秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
然463完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
李健应助ARESCI采纳,获得10
2分钟前
samsahpiyaz发布了新的文献求助10
3分钟前
犹豫翠萱完成签到 ,获得积分10
4分钟前
老迟到的羊完成签到 ,获得积分10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
moonlight发布了新的文献求助10
5分钟前
gjq完成签到,获得积分10
5分钟前
hhuajw完成签到,获得积分10
5分钟前
烂漫的芫完成签到 ,获得积分10
6分钟前
6分钟前
爱思考的小笨笨完成签到,获得积分10
6分钟前
6分钟前
obedVL完成签到,获得积分10
6分钟前
昵称已挥发完成签到,获得积分10
6分钟前
sldragon完成签到,获得积分10
7分钟前
7分钟前
xiaoyuan发布了新的文献求助10
7分钟前
小黄还你好完成签到 ,获得积分10
7分钟前
LYL完成签到,获得积分10
7分钟前
Wei发布了新的文献求助10
7分钟前
8分钟前
群山完成签到 ,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
11分钟前
gszy1975完成签到,获得积分10
11分钟前
量子星尘发布了新的文献求助10
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516