Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 欠采样 程序设计语言 环境工程 数学分析 语言学 哲学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:24
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangwang2168发布了新的文献求助10
刚刚
Anna发布了新的文献求助10
1秒前
gao发布了新的文献求助10
1秒前
坚定笑蓝完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
领导范儿应助哈哈哈采纳,获得10
3秒前
灿灿呀发布了新的文献求助10
3秒前
idealist0315发布了新的文献求助10
3秒前
想去电影院完成签到,获得积分10
4秒前
fufu6发布了新的文献求助20
4秒前
Godspeed发布了新的文献求助10
4秒前
SHU发布了新的文献求助10
5秒前
桶桶完成签到,获得积分10
6秒前
椒盐丸子发布了新的文献求助10
6秒前
6秒前
6秒前
悦耳寒云完成签到,获得积分10
6秒前
勤奋以蓝完成签到,获得积分10
7秒前
风中冰香应助000采纳,获得10
7秒前
7秒前
8秒前
教主完成签到,获得积分10
8秒前
xiaofeizhu发布了新的文献求助10
8秒前
9秒前
疯狂的海亦完成签到,获得积分10
9秒前
北夏发布了新的文献求助10
9秒前
新新辛欣发布了新的文献求助10
9秒前
门门完成签到 ,获得积分10
10秒前
兴奋的听筠完成签到,获得积分10
10秒前
wangwang2168完成签到,获得积分10
11秒前
wenbo发布了新的文献求助10
12秒前
12秒前
欣喜灵波发布了新的文献求助10
12秒前
酷酷的听筠完成签到,获得积分20
12秒前
可爱的函函应助楼谷秋采纳,获得10
12秒前
银鱼在游完成签到,获得积分10
13秒前
坚定晓兰应助qwerty采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434688
求助须知:如何正确求助?哪些是违规求助? 4547007
关于积分的说明 14205516
捐赠科研通 4467012
什么是DOI,文献DOI怎么找? 2448380
邀请新用户注册赠送积分活动 1439285
关于科研通互助平台的介绍 1416060