清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:29
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12305014077完成签到 ,获得积分10
25秒前
大医仁心完成签到 ,获得积分10
42秒前
47秒前
51秒前
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
fabius0351完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
乐乐应助Developing_human采纳,获得50
2分钟前
QI完成签到 ,获得积分10
3分钟前
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
3分钟前
重庆森林应助科研通管家采纳,获得10
4分钟前
5分钟前
劉浏琉发布了新的文献求助10
5分钟前
西山菩提完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
MchemG应助科研通管家采纳,获得20
6分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
劉浏琉完成签到,获得积分10
6分钟前
很多奶油完成签到 ,获得积分10
6分钟前
小蓝完成签到 ,获得积分10
6分钟前
香蕉觅云应助Developing_human采纳,获得30
6分钟前
Yatagarasu发布了新的文献求助10
7分钟前
wrl2023完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644889
求助须知:如何正确求助?哪些是违规求助? 4766363
关于积分的说明 15025903
捐赠科研通 4803275
什么是DOI,文献DOI怎么找? 2568137
邀请新用户注册赠送积分活动 1525607
关于科研通互助平台的介绍 1485151