Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:29
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵666完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
沿途有你完成签到 ,获得积分10
2秒前
尹梦成完成签到,获得积分10
2秒前
爆米花应助lilililia采纳,获得10
2秒前
HJJHJH发布了新的文献求助10
3秒前
三三得九完成签到 ,获得积分10
5秒前
华仔应助张小盒采纳,获得10
5秒前
科研通AI6.1应助汪宇采纳,获得10
6秒前
7秒前
烟花应助Dylan采纳,获得10
9秒前
爆米花完成签到,获得积分10
10秒前
风趣烤鸡完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
16秒前
ivy完成签到 ,获得积分10
16秒前
咕噜圈儿完成签到,获得积分10
18秒前
yurany完成签到 ,获得积分10
19秒前
ruibo发布了新的文献求助30
19秒前
忧伤的雅绿关注了科研通微信公众号
20秒前
22秒前
汪宇发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
27秒前
29秒前
totoo2021完成签到,获得积分10
30秒前
31秒前
岩下松风完成签到,获得积分10
32秒前
32秒前
果子完成签到 ,获得积分10
33秒前
新伟张发布了新的文献求助10
34秒前
panqi发布了新的文献求助10
34秒前
无尘完成签到 ,获得积分10
36秒前
Dylan发布了新的文献求助10
38秒前
fluu完成签到,获得积分20
38秒前
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896