Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier BV]
卷期号:200: 104781-104781 被引量:21
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寂寞圣贤发布了新的文献求助10
1秒前
小鹿呀完成签到,获得积分10
1秒前
温柔的夜柳完成签到,获得积分10
2秒前
huhuan完成签到,获得积分10
3秒前
HCLonely完成签到,获得积分0
4秒前
舒适数据线关注了科研通微信公众号
4秒前
远方完成签到,获得积分10
4秒前
上杉绘梨衣完成签到,获得积分10
4秒前
yang完成签到 ,获得积分10
5秒前
yier完成签到,获得积分10
5秒前
fissh完成签到,获得积分10
5秒前
傅寒天完成签到,获得积分10
5秒前
lillian完成签到,获得积分10
5秒前
Youdge完成签到,获得积分10
6秒前
guozizi发布了新的文献求助30
6秒前
7秒前
pgh.hh完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
8秒前
小杨发布了新的文献求助10
8秒前
懵懂的海露完成签到,获得积分10
8秒前
早早完成签到,获得积分10
8秒前
授业解惑的哑铃完成签到,获得积分10
10秒前
red发布了新的文献求助10
10秒前
dywen完成签到,获得积分10
10秒前
wangke完成签到,获得积分10
11秒前
林子觽完成签到,获得积分10
11秒前
捞鱼完成签到,获得积分10
12秒前
满意的皮带完成签到,获得积分10
12秒前
愉快书琴完成签到,获得积分10
13秒前
小费发布了新的文献求助30
13秒前
huohuo完成签到,获得积分10
14秒前
lixy完成签到,获得积分10
15秒前
凯旋侯完成签到,获得积分10
15秒前
wh完成签到,获得积分10
15秒前
Crazyer完成签到,获得积分10
16秒前
荀煜祺发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
柠檬完成签到,获得积分10
16秒前
郁乾完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259