Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:12
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳反复发布了新的文献求助10
刚刚
可爱的函函应助晚心采纳,获得10
1秒前
1秒前
彭于彦祖应助吱吱采纳,获得30
2秒前
欢呼又夏发布了新的文献求助10
2秒前
taotie发布了新的文献求助10
2秒前
天天发布了新的文献求助10
3秒前
puzhongjiMiQ发布了新的文献求助10
3秒前
Flemyng发布了新的文献求助10
4秒前
林中漫完成签到,获得积分10
5秒前
Mircale发布了新的文献求助10
5秒前
小二郎应助天真的半莲采纳,获得10
6秒前
6秒前
6秒前
yy发布了新的文献求助10
6秒前
RYChiju发布了新的文献求助150
7秒前
端庄书雁发布了新的文献求助10
8秒前
orixero应助xue采纳,获得10
9秒前
9秒前
clyhg完成签到,获得积分10
9秒前
10秒前
taotie完成签到,获得积分10
10秒前
木果果木完成签到,获得积分10
10秒前
倒霉的芒果完成签到 ,获得积分10
11秒前
今后应助霜打了的葡萄采纳,获得10
11秒前
11秒前
害怕的傲儿完成签到,获得积分10
11秒前
11秒前
12秒前
酷波er应助芳芳反复采纳,获得10
12秒前
脑洞疼应助小会采纳,获得10
13秒前
13秒前
李白发布了新的文献求助10
13秒前
欢呼又夏完成签到,获得积分20
14秒前
14秒前
栗子完成签到,获得积分10
14秒前
14秒前
14秒前
壮观的外绣完成签到,获得积分10
15秒前
Flemyng完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼,英文版即可,因为没有中文版。 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156631
求助须知:如何正确求助?哪些是违规求助? 2808058
关于积分的说明 7876045
捐赠科研通 2466421
什么是DOI,文献DOI怎么找? 1312876
科研通“疑难数据库(出版商)”最低求助积分说明 630299
版权声明 601919