已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel intelligent diagnosis method of oil and gas pipeline defects with transfer deep learning and feature fusion

管道(软件) 特征(语言学) 短时傅里叶变换 学习迁移 卷积神经网络 管道运输 人工智能 混叠 计算机科学 小波变换 小波 傅里叶变换 工程类 模式识别(心理学) 傅里叶分析 数学 哲学 欠采样 数学分析 程序设计语言 环境工程 语言学
作者
Junming Yao,Wei Liang,Jingyi Xiong
出处
期刊:International Journal of Pressure Vessels and Piping [Elsevier]
卷期号:200: 104781-104781 被引量:29
标识
DOI:10.1016/j.ijpvp.2022.104781
摘要

The destruction of oil and gas pipelines may result in enormous financial loss and significantly affect public safety. Hence, early defect diagnosis of oil and gas pipelines is of immense significance. In order to improve the accuracy and reliability of oil and gas pipeline defect detection and diagnosis with limitation of small and poor data sets, this paper proposes intelligent diagnosis and recognition method based on Transfer deep learning, Continuous Wavelet and Short-time Fourier Time-Frequency feature fusion, and Strengthen Convolutional Neural Network (TWSC). Oil and gas pipeline defects are converted into identifiable defect signals by the three-coil bidirectional excitation detector. Feature fusion, focusing on different feature distribution composed of Short-Term Fourier Transform (STFT) and Continuous Wavelet Transform (CWT), is introduced as the input of the TWSC model. It effectively extracts the time-frequency features of the defect signal on different feature distribution, and complements each other. A deep convolutional neural network with strengthen convolution kernel is constructed as a diagnostic model, expanding receptive field of diagnosis. For most practical engineering problems that only have a small data set with partial poor samples, transfer learning is introduced in the model to optimize the diagnostic performance. Parameter transfer from transfer network is operated to initialize the diagnostic model parameters. The limitation of insufficient training with a small data set and interference of poor samples during model initial training progress are both greatly improved. Under the conditions of oil and gas stations and laboratories, the typical oil and gas pipeline defects are collected to analyze. For simulating complex working conditions, the diagnosis performance of add-noise signal is verified. The final results show that TWSC intelligent diagnosis method proposed in this paper has a good performance on diagnosis accuracy and stability in defect diagnosis of oil and gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sakura完成签到 ,获得积分10
刚刚
蒋羊羊完成签到 ,获得积分20
刚刚
吃喝玩睡完成签到 ,获得积分10
1秒前
Dylan完成签到 ,获得积分10
1秒前
研友_ZGRvon完成签到,获得积分10
2秒前
2秒前
3秒前
山野完成签到 ,获得积分10
4秒前
大爱人生完成签到 ,获得积分10
4秒前
沁雪完成签到 ,获得积分10
5秒前
gyh发布了新的文献求助10
5秒前
nono完成签到 ,获得积分10
6秒前
123zyx完成签到 ,获得积分10
6秒前
FODCOC完成签到,获得积分10
6秒前
XIXIXI完成签到 ,获得积分10
6秒前
7秒前
lzp完成签到 ,获得积分10
8秒前
大大大忽悠完成签到 ,获得积分10
9秒前
10秒前
认真的不斜完成签到 ,获得积分10
11秒前
卿霜完成签到 ,获得积分10
11秒前
平常的羊完成签到 ,获得积分10
12秒前
lvwenjie完成签到 ,获得积分20
12秒前
海哥哥完成签到 ,获得积分10
13秒前
Rdx发布了新的文献求助10
13秒前
14秒前
黎明深雪完成签到 ,获得积分10
14秒前
科目三应助墨梅采纳,获得10
15秒前
17秒前
巴音布鲁克完成签到 ,获得积分10
18秒前
嘟嘟嘟嘟完成签到 ,获得积分10
20秒前
呜哩哇啦发布了新的文献求助10
21秒前
Omni完成签到,获得积分10
22秒前
22秒前
1010完成签到,获得积分10
23秒前
悄悄拔尖儿完成签到 ,获得积分10
23秒前
bkagyin应助真白白鸭采纳,获得10
26秒前
拨云见日完成签到,获得积分10
26秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627542
求助须知:如何正确求助?哪些是违规求助? 4714120
关于积分的说明 14962623
捐赠科研通 4785063
什么是DOI,文献DOI怎么找? 2554957
邀请新用户注册赠送积分活动 1516420
关于科研通互助平台的介绍 1476765