Construction of AI Environmental Music Education Application Model Based on Deep Learning

光谱图 计算机科学 意识形态 组分(热力学) 比例(比率) 流行音乐自动化 人工智能 班级(哲学) 深度学习 多媒体 音乐教育 心理学 音乐创作 教育学 物理 量子力学 政治 政治学 法学 热力学
作者
Chaozhi Cheng,Yujun Xiao
出处
期刊:Journal of Environmental and Public Health [Hindawi Limited]
卷期号:2022: 1-9 被引量:3
标识
DOI:10.1155/2022/6440464
摘要

The art of music, which is a necessary component of daily life and an ideology older than language, reflects the emotions of human reality. Many new elements have been introduced into music as a result of the quick development of technology, gradually altering how people create, perform, and enjoy music. It is incredible to see how actively AI has been used in music applications and music education over the past few years and how significantly it has advanced. AI technology can efficiently pull in the course, stratify complex large-scale music or sections, simplify teaching, improve student understanding of music, solve challenging student problems in class, and simplify the tasks of teachers. The traditional music education model has been modified, and the music education model's audacious innovation has been made possible by reducing the distance between the teacher and the student. A classification algorithm based on spectrogram and NNS is proposed in light of the advantages in image processing. The abstract features on the spectrogram are automatically extracted using the NNS, which completes the end-to-end learning and avoids the tediousness and inaccuracy of manual feature extraction. This study, which uses experimental analysis to support its findings, demonstrates that different music teaching genres can be accurately classified at a rate of over 90%, which has a positive impact on recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿费发布了新的文献求助10
1秒前
卷心菜来两斤完成签到,获得积分10
3秒前
LIUDAN发布了新的文献求助10
4秒前
yufanhui应助gms采纳,获得10
4秒前
4秒前
huiliang完成签到,获得积分10
5秒前
科研通AI2S应助Cheney采纳,获得10
5秒前
5秒前
6秒前
英姑应助我就是KKKK采纳,获得10
7秒前
何处西风无酒旗完成签到,获得积分10
8秒前
旺仔发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分10
9秒前
9秒前
科研小白完成签到,获得积分10
10秒前
MRM完成签到 ,获得积分10
10秒前
汉堡包应助默默的依凝采纳,获得10
11秒前
承宇发布了新的文献求助10
11秒前
英姑应助Liuuuu采纳,获得10
12秒前
ANNNNN发布了新的文献求助20
16秒前
18秒前
刘~发布了新的文献求助10
18秒前
20秒前
23秒前
TY完成签到 ,获得积分10
23秒前
Albert发布了新的文献求助10
23秒前
24秒前
Liuuuu发布了新的文献求助10
25秒前
所所应助景穆采纳,获得10
25秒前
Leo7发布了新的文献求助10
26秒前
wing00024完成签到,获得积分10
27秒前
宜醉宜游宜睡应助tsttst采纳,获得10
27秒前
在水一方应助平淡茈采纳,获得10
28秒前
28秒前
刘~完成签到,获得积分10
29秒前
31秒前
32秒前
tian完成签到,获得积分10
34秒前
37秒前
我就是KKKK发布了新的文献求助10
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302