Diversified branch fusion for self-knowledge distillation

计算机科学 蒸馏 融合 人工智能 化学 色谱法 语言学 哲学
作者
Zuxiang Long,Fuyan Ma,Bin Sun,Mingkui Tan,Shutao Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 12-22 被引量:2
标识
DOI:10.1016/j.inffus.2022.09.007
摘要

Knowledge distillation improves the performance of a compact student network by adding supervision from a pre-trained cumbersome teacher network during training. To avoid the resource consumption of acquiring an extra teacher network, the self-knowledge distillation designs a multi-branch network architecture with shared layers for teacher and student models, which are trained collaboratively in a one-stage manner. However, this method ignores the knowledge of shallow branches and rarely provides diverse knowledge for effective collaboration of different branches. To solve these two shortcomings, this paper proposes a novel Diversified Branch Fusion approach for Self-Knowledge Distillation (DBFSKD). Firstly, we design lightweight networks for adding to the middle layers of the backbone. They capture discriminative information by global-local attention. Then we introduce a diversity loss between different branches to explore diverse knowledge. Moreover, the diverse knowledge is further integrated to form two knowledge sources by a Selective Feature Fusion (SFF) and a Dynamic Logits Fusion (DLF). Thus, the significant knowledge of shallow branches is efficiently utilized and all branches learn from each other through the fused knowledge sources. Extensive experiments with various backbone structures on four public datasets (CIFAR100, Tiny-ImageNet200, ImageNet, and RAF-DB) show superior performance of the proposed method over other methods. More importantly, the DBFSKD achieves even better performance with fewer resource consumption than the baseline. • Diversified branch fusion approach is proposed for self-knowledge distillation. • Shallow branches provide complementary information for the deep ones. • Feature and logits level fusion provides richer knowledge source for distillation. • Diversity loss encourages the branches to explore diverse knowledge. • DBFSKD obtains SOTA results in the facial expression recognition application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
克姑美完成签到 ,获得积分10
1秒前
FashionBoy应助吴建文采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
朱zhu发布了新的文献求助200
3秒前
努恩完成签到,获得积分10
3秒前
小龅牙吖完成签到,获得积分10
4秒前
ding应助叁月二采纳,获得10
4秒前
黄芩完成签到 ,获得积分10
5秒前
茴茴完成签到 ,获得积分10
5秒前
smiling发布了新的文献求助10
5秒前
整齐小猫咪完成签到,获得积分10
5秒前
5秒前
火山上的鲍师傅完成签到,获得积分10
8秒前
9秒前
程哲瀚完成签到,获得积分10
11秒前
浮光完成签到,获得积分10
11秒前
小猛哥完成签到,获得积分10
11秒前
钰宁完成签到,获得积分10
12秒前
jiangcai完成签到,获得积分10
13秒前
dssouc发布了新的文献求助10
13秒前
呵呵呵呵完成签到,获得积分10
13秒前
JamesPei应助苹果发夹采纳,获得10
14秒前
小化化爱学习完成签到,获得积分10
14秒前
柳煜城完成签到,获得积分10
15秒前
负数完成签到,获得积分10
16秒前
shuzi发布了新的文献求助10
16秒前
17秒前
Brendan完成签到,获得积分10
17秒前
17秒前
ll2925203完成签到,获得积分10
17秒前
mcl关闭了mcl文献求助
17秒前
东耦完成签到,获得积分10
18秒前
18秒前
思源应助小猛哥采纳,获得10
18秒前
苹果小蜜蜂完成签到,获得积分10
19秒前
whyme完成签到,获得积分10
19秒前
lily完成签到 ,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259