Diversified branch fusion for self-knowledge distillation

计算机科学 蒸馏 融合 人工智能 化学 色谱法 语言学 哲学
作者
Zuxiang Long,Fuyan Ma,Bin Sun,Mingkui Tan,Shutao Li
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 12-22 被引量:2
标识
DOI:10.1016/j.inffus.2022.09.007
摘要

Knowledge distillation improves the performance of a compact student network by adding supervision from a pre-trained cumbersome teacher network during training. To avoid the resource consumption of acquiring an extra teacher network, the self-knowledge distillation designs a multi-branch network architecture with shared layers for teacher and student models, which are trained collaboratively in a one-stage manner. However, this method ignores the knowledge of shallow branches and rarely provides diverse knowledge for effective collaboration of different branches. To solve these two shortcomings, this paper proposes a novel Diversified Branch Fusion approach for Self-Knowledge Distillation (DBFSKD). Firstly, we design lightweight networks for adding to the middle layers of the backbone. They capture discriminative information by global-local attention. Then we introduce a diversity loss between different branches to explore diverse knowledge. Moreover, the diverse knowledge is further integrated to form two knowledge sources by a Selective Feature Fusion (SFF) and a Dynamic Logits Fusion (DLF). Thus, the significant knowledge of shallow branches is efficiently utilized and all branches learn from each other through the fused knowledge sources. Extensive experiments with various backbone structures on four public datasets (CIFAR100, Tiny-ImageNet200, ImageNet, and RAF-DB) show superior performance of the proposed method over other methods. More importantly, the DBFSKD achieves even better performance with fewer resource consumption than the baseline. • Diversified branch fusion approach is proposed for self-knowledge distillation. • Shallow branches provide complementary information for the deep ones. • Feature and logits level fusion provides richer knowledge source for distillation. • Diversity loss encourages the branches to explore diverse knowledge. • DBFSKD obtains SOTA results in the facial expression recognition application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雪松完成签到,获得积分10
刚刚
希望天下0贩的0应助KK采纳,获得10
1秒前
1秒前
1秒前
所所应助豆豆采纳,获得10
4秒前
nanniyi完成签到,获得积分10
4秒前
5秒前
5秒前
luoyatu发布了新的文献求助10
5秒前
伊森发布了新的文献求助10
5秒前
坚强幼晴发布了新的文献求助10
6秒前
SJT完成签到,获得积分10
6秒前
听话的醉冬完成签到 ,获得积分10
6秒前
科目三应助Huy_rin采纳,获得30
6秒前
丰盛的煎饼应助幸福糖豆采纳,获得10
7秒前
7秒前
7秒前
Gallager完成签到,获得积分10
8秒前
8秒前
李健的小迷弟应助Rollin采纳,获得10
9秒前
yuko发布了新的文献求助10
10秒前
Orange应助坚强幼晴采纳,获得10
11秒前
12秒前
12秒前
12秒前
妮妮发布了新的文献求助10
13秒前
花道发布了新的文献求助10
13秒前
顾天与完成签到,获得积分10
14秒前
酷波er应助luoyatu采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
欣喜书桃发布了新的文献求助10
17秒前
19秒前
高发发布了新的文献求助10
19秒前
桐桐应助Wang采纳,获得10
20秒前
朴实夏波完成签到,获得积分10
20秒前
JamesPei应助Gallager采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821