Comparison of machine learning predictions of subjective poverty in rural China

贫穷 感觉 经济 社会经济地位 随机森林 消费(社会学) 人口经济学 公共经济学 社会经济学 心理学 经济增长 计算机科学 机器学习 社会心理学 社会学 人口学 社会科学 人口
作者
Lucie Maruejols,Hanjie Wang,Qiran Zhao,Yunli Bai,Linxiu Zhang
出处
期刊:China Agricultural Economic Review [Emerald (MCB UP)]
卷期号:15 (2): 379-399 被引量:7
标识
DOI:10.1108/caer-03-2022-0051
摘要

Purpose Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sallyshe发布了新的文献求助20
刚刚
刚刚
调皮的长颈鹿完成签到,获得积分10
1秒前
天天快乐应助光亮青筠采纳,获得10
1秒前
研友_VZG7GZ应助jianglili采纳,获得10
2秒前
悬铃木完成签到,获得积分10
3秒前
研友_08ozgZ发布了新的文献求助30
4秒前
centlay完成签到,获得积分0
5秒前
小蘑菇应助fanny采纳,获得30
5秒前
sunny2470发布了新的文献求助10
5秒前
jxt完成签到,获得积分10
6秒前
ding应助天天采纳,获得10
6秒前
Owen应助天天采纳,获得10
6秒前
情怀应助一路生花采纳,获得10
6秒前
科研通AI6.1应助天天采纳,获得10
6秒前
eric888应助天天采纳,获得80
6秒前
隐形曼青应助天天采纳,获得10
6秒前
六六六完成签到,获得积分10
6秒前
sica1102完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Artemis完成签到,获得积分10
7秒前
坦率的咖啡豆完成签到,获得积分10
8秒前
悦耳的芒果完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
JCSY完成签到 ,获得积分10
9秒前
imagine完成签到,获得积分20
9秒前
10秒前
Lucas应助丢丢银采纳,获得10
10秒前
10秒前
嗖嗖发布了新的文献求助20
11秒前
火星发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
wxy发布了新的文献求助10
13秒前
13秒前
imagine发布了新的文献求助10
15秒前
饭勺发布了新的文献求助20
15秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749129
求助须知:如何正确求助?哪些是违规求助? 5456459
关于积分的说明 15362629
捐赠科研通 4888656
什么是DOI,文献DOI怎么找? 2628581
邀请新用户注册赠送积分活动 1576934
关于科研通互助平台的介绍 1533660