Comparison of machine learning predictions of subjective poverty in rural China

贫穷 感觉 经济 社会经济地位 随机森林 消费(社会学) 人口经济学 公共经济学 社会经济学 心理学 经济增长 计算机科学 机器学习 社会心理学 社会学 人口学 社会科学 人口
作者
Lucie Maruejols,Hanjie Wang,Qiran Zhao,Yunli Bai,Linxiu Zhang
出处
期刊:China Agricultural Economic Review [Emerald (MCB UP)]
卷期号:15 (2): 379-399 被引量:7
标识
DOI:10.1108/caer-03-2022-0051
摘要

Purpose Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的念云完成签到,获得积分10
1秒前
落后的小蕊完成签到,获得积分10
1秒前
花花完成签到 ,获得积分10
2秒前
mali完成签到,获得积分20
2秒前
小螃蟹完成签到 ,获得积分10
3秒前
YJ完成签到,获得积分10
3秒前
张zzz完成签到,获得积分10
5秒前
ding应助Youth采纳,获得10
5秒前
6秒前
6秒前
丰富的跳跳糖完成签到,获得积分20
7秒前
Herman_Chen完成签到,获得积分10
7秒前
桐桐应助晓晓雪采纳,获得10
8秒前
孤独雨梅完成签到,获得积分10
9秒前
开心向真完成签到,获得积分10
11秒前
张一完成签到,获得积分10
11秒前
彪壮的含双完成签到,获得积分10
11秒前
宝宝发布了新的文献求助10
12秒前
12秒前
甜美的秋天完成签到 ,获得积分10
12秒前
爱科研的杰杰桀桀完成签到 ,获得积分10
12秒前
13秒前
孤独如曼完成签到 ,获得积分10
14秒前
笨笨西装完成签到,获得积分10
14秒前
Youth完成签到,获得积分10
15秒前
曾经雪瑶完成签到 ,获得积分10
15秒前
JOJO完成签到,获得积分10
16秒前
背书强完成签到 ,获得积分10
16秒前
瘦瘦的铅笔完成签到 ,获得积分10
16秒前
菠萝吹雪完成签到,获得积分10
17秒前
Youth发布了新的文献求助10
19秒前
田様应助小智采纳,获得10
19秒前
宝宝完成签到,获得积分10
19秒前
yjjh完成签到 ,获得积分10
19秒前
任性的傲柏完成签到,获得积分10
21秒前
fat完成签到,获得积分10
24秒前
活力雁枫完成签到,获得积分10
24秒前
小詹完成签到,获得积分10
24秒前
shuaiwen25完成签到,获得积分10
27秒前
子车代芙完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580504
求助须知:如何正确求助?哪些是违规求助? 3150008
关于积分的说明 9479690
捐赠科研通 2851531
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579