Comparison of machine learning predictions of subjective poverty in rural China

贫穷 感觉 经济 社会经济地位 随机森林 消费(社会学) 人口经济学 公共经济学 社会经济学 心理学 经济增长 计算机科学 机器学习 社会心理学 社会学 人口学 社会科学 人口
作者
Lucie Maruejols,Hanjie Wang,Qiran Zhao,Yunli Bai,Linxiu Zhang
出处
期刊:China Agricultural Economic Review [Emerald Publishing Limited]
卷期号:15 (2): 379-399 被引量:7
标识
DOI:10.1108/caer-03-2022-0051
摘要

Purpose Despite rising incomes and reduction of extreme poverty, the feeling of being poor remains widespread. Support programs can improve well-being, but they first require identifying who are the households that judge their income is insufficient to meet their basic needs, and what factors are associated with subjective poverty. Design/methodology/approach Households report the income level they judge is sufficient to make ends meet. Then, they are classified as being subjectively poor if their own monetary income is inferior to the level they indicated. Second, the study compares the performance of three machine learning algorithms, the random forest, support vector machines and least absolute shrinkage and selection operator (LASSO) regression, applied to a set of socioeconomic variables to predict subjective poverty status. Findings The random forest generates 85.29% of correct predictions using a range of income and non-income predictors, closely followed by the other two techniques. For the middle-income group, the LASSO regression outperforms random forest. Subjective poverty is mostly associated with monetary income for low-income households. However, a combination of low income, low endowment (land, consumption assets) and unusual large expenditure (medical, gifts) constitutes the key predictors of feeling poor for the middle-income households. Practical implications To reduce the feeling of poverty, policy intervention should continue to focus on increasing incomes. However, improvements in nonincome domains such as health expenditure, education and family demographics can also relieve the feeling of income inadequacy. Methodologically, better performance of either algorithm depends on the data at hand. Originality/value For the first time, the authors show that prediction techniques are reliable to identify subjective poverty prevalence, with example from rural China. The analysis offers specific attention to the modest-income households, who may feel poor but not be identified as such by objective poverty lines, and is relevant when policy-makers seek to address the “next step” after ending extreme poverty. Prediction performance and mechanisms for three machine learning algorithms are compared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
2秒前
hxpxp完成签到,获得积分10
3秒前
3秒前
愉快的犀牛完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Ao_Jiang完成签到,获得积分10
7秒前
8秒前
大知闲闲完成签到 ,获得积分10
15秒前
开心的云完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
打打应助我有一只猫采纳,获得10
17秒前
周常通完成签到,获得积分10
18秒前
朔方姑娘吧完成签到 ,获得积分10
25秒前
26秒前
天道酬勤完成签到,获得积分10
27秒前
28秒前
leena完成签到 ,获得积分10
33秒前
煲煲煲仔饭完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
zhang完成签到 ,获得积分10
36秒前
onevip完成签到,获得积分0
36秒前
dolabmu完成签到 ,获得积分10
37秒前
laber应助科研通管家采纳,获得50
40秒前
laber应助科研通管家采纳,获得50
40秒前
风清扬应助科研通管家采纳,获得150
40秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
和平使命应助科研通管家采纳,获得10
40秒前
laber应助科研通管家采纳,获得50
40秒前
Akim应助科研通管家采纳,获得10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
康谨完成签到 ,获得积分10
41秒前
Kiki完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
47秒前
猴王完成签到,获得积分10
50秒前
小海棉完成签到,获得积分10
50秒前
奥丁不言语完成签到 ,获得积分10
50秒前
桃花源的瓶起子完成签到 ,获得积分10
51秒前
河鲸完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651