纳米棒
超级电容器
水滑石
材料科学
电化学
电容
化学工程
水热合成
微观结构
比表面积
热液循环
氢氧化物
氧化还原
电极
纳米技术
化学
复合材料
冶金
有机化学
催化作用
物理化学
工程类
作者
Jinli Shang,Yude Zhang,Qian Zhang,Yan Li,Fuyao Deng,Rongjun Gao,Jiebin Wang
标识
DOI:10.1016/j.jallcom.2022.166668
摘要
Layered double hydroxide (LDH) has attracted extensive attention as the potential electrode materials used in asymmetric supercapacitor (ASC) because of its adjustable elemental composition and microstructure. In this work, a series of NiCoFe-LDH with different element ratios and morphology was synthesized by a facile hydrothermal treatment. A special interlaced structure assembled by nanorods and nanosheets surprisedly emerged. The nanorods and nanosheets have same chemical composition. The corresponding NiCoFe-LDH with interlaced structure exhibits much excellent electrochemical performance than that with single structure. Especially, the Ni2Co1Fe1-LDH material has the highest specific capacitance of 1772.26 F g−1 at 1 A g−1 due to the suitable specific surface area and pore structure, faster electron transportation and dynamic Faradaic redox reactions. The Ni2Co1Fe1-LDH//AC ASC based on the Ni2Co1Fe1-LDH and active carbon (AC) reveals a better specific capacitance of 256.19 F g−1 at 1 A g−1 and an excellent energy density of 91.09 Wh kg−1 at the power density of 809.68 W kg−1. The change of metal element proportion effectively adjusted the interlaced structure of NiCoFe-LDH and extremely enhanced the electrochemical performance of the resulted electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI