清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial neural network model of catalytic coal gasification in fixed bed

产量(工程) 催化作用 人工神经网络 碳纤维 级联 甲烷 煤气化 工艺工程 制氢 废物管理 环境科学 化学 材料科学 化学工程 计算机科学 工程类 有机化学 人工智能 复合材料 复合数
作者
Weiwei Li,Yao Song
出处
期刊:Journal of The Energy Institute [Elsevier]
卷期号:105: 176-183 被引量:15
标识
DOI:10.1016/j.joei.2022.08.012
摘要

Catalytic coal gasification is a cost-effective way to utilize coal to produce hydrogen or methane. Because of complex interactions among hydrodynamics and chemical reactions with catalyst, it was very difficult to predict hydrogen yield and carbon conversion. Therefore, three kinds of artificial neural network (ANN) models, including feed-forward back propagation neural network (FFBP), cascade-forward back propagation neural network with Levenberge Marquardt algorithms (CFBP), and cascade-forward back propagation neural network with genetic algorithm (CFBP-GA) were used to predict these processes. Three kinds of input parameters were used, such as coal ultimate analyses, coal proximate analyses and operation conditions. Gas yield and carbon conversion were taken as output parameters. R2 of all three established ANN models were above 0.9. The CFBP-GA showed good performance with E2 = 0.000241 and R2 = 0.9978 than the other two ANN models. And then, the model was used to predict the effects of temperature, catalyst type and catalyst loading on carbon conversion and hydrogen yield. The most important three factors for carbon conversion and hydrogen yield were catalyst type, catalyst loading and temperature based on relative importance analysis. The good performances were indicated the ANN model was an effective way to predict hydrogen production and carbon conversion of catalytic coal gasification in fixed bed quickly and accurately, and it could be also extended to other carbon resources to produce hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxinge完成签到 ,获得积分10
3秒前
桐桐应助niko采纳,获得10
6秒前
852应助niko采纳,获得10
6秒前
深情安青应助niko采纳,获得10
6秒前
汉堡包应助niko采纳,获得10
6秒前
慕青应助niko采纳,获得10
6秒前
完美世界应助niko采纳,获得10
6秒前
李健应助niko采纳,获得10
6秒前
打打应助niko采纳,获得10
6秒前
CipherSage应助niko采纳,获得10
6秒前
科目三应助niko采纳,获得10
6秒前
6秒前
科研通AI6应助niko采纳,获得10
11秒前
情怀应助niko采纳,获得10
11秒前
科研通AI6应助niko采纳,获得10
11秒前
852应助niko采纳,获得10
11秒前
科研通AI6应助niko采纳,获得30
11秒前
无花果应助niko采纳,获得10
11秒前
科研通AI6应助niko采纳,获得10
11秒前
隐形曼青应助niko采纳,获得10
11秒前
李健的小迷弟应助niko采纳,获得10
11秒前
英姑应助niko采纳,获得10
11秒前
随心所欲完成签到 ,获得积分10
14秒前
希望天下0贩的0应助niko采纳,获得10
16秒前
情怀应助niko采纳,获得10
16秒前
科研通AI6应助niko采纳,获得10
16秒前
所所应助niko采纳,获得10
16秒前
科研通AI6应助niko采纳,获得10
16秒前
情怀应助niko采纳,获得10
16秒前
无花果应助niko采纳,获得10
16秒前
上官若男应助niko采纳,获得10
16秒前
研友_VZG7GZ应助niko采纳,获得10
16秒前
小蘑菇应助niko采纳,获得30
16秒前
嗯嗯的嗯嗯完成签到,获得积分10
17秒前
小蘑菇应助niko采纳,获得10
21秒前
Hello应助niko采纳,获得10
21秒前
JamesPei应助niko采纳,获得10
21秒前
慕青应助niko采纳,获得10
21秒前
科研通AI6应助niko采纳,获得10
21秒前
Ava应助niko采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534355
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582572
捐赠科研通 4562591
什么是DOI,文献DOI怎么找? 2500254
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450981