Artificial neural network model of catalytic coal gasification in fixed bed

产量(工程) 催化作用 人工神经网络 碳纤维 级联 甲烷 煤气化 工艺工程 制氢 废物管理 环境科学 化学 材料科学 化学工程 计算机科学 工程类 有机化学 人工智能 复合材料 复合数
作者
Weiwei Li,Yao Song
出处
期刊:Journal of The Energy Institute [Elsevier]
卷期号:105: 176-183 被引量:15
标识
DOI:10.1016/j.joei.2022.08.012
摘要

Catalytic coal gasification is a cost-effective way to utilize coal to produce hydrogen or methane. Because of complex interactions among hydrodynamics and chemical reactions with catalyst, it was very difficult to predict hydrogen yield and carbon conversion. Therefore, three kinds of artificial neural network (ANN) models, including feed-forward back propagation neural network (FFBP), cascade-forward back propagation neural network with Levenberge Marquardt algorithms (CFBP), and cascade-forward back propagation neural network with genetic algorithm (CFBP-GA) were used to predict these processes. Three kinds of input parameters were used, such as coal ultimate analyses, coal proximate analyses and operation conditions. Gas yield and carbon conversion were taken as output parameters. R2 of all three established ANN models were above 0.9. The CFBP-GA showed good performance with E2 = 0.000241 and R2 = 0.9978 than the other two ANN models. And then, the model was used to predict the effects of temperature, catalyst type and catalyst loading on carbon conversion and hydrogen yield. The most important three factors for carbon conversion and hydrogen yield were catalyst type, catalyst loading and temperature based on relative importance analysis. The good performances were indicated the ANN model was an effective way to predict hydrogen production and carbon conversion of catalytic coal gasification in fixed bed quickly and accurately, and it could be also extended to other carbon resources to produce hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助魔音甜菜采纳,获得10
1秒前
科研通AI6应助满_1999采纳,获得10
2秒前
2秒前
4秒前
Ava应助fafafa采纳,获得10
5秒前
6秒前
科研通AI6应助alex采纳,获得10
7秒前
李健的小迷弟应助炎燚采纳,获得10
8秒前
闪闪的雨柏完成签到,获得积分10
9秒前
科研通AI6应助shengsheng采纳,获得10
10秒前
10秒前
科研通AI2S应助weixin112233采纳,获得10
10秒前
酷波er应助May采纳,获得10
10秒前
11秒前
11秒前
爱吃米线发布了新的文献求助10
11秒前
郑浩龙完成签到,获得积分10
11秒前
11秒前
Jane_Xin发布了新的文献求助10
12秒前
79完成签到,获得积分10
13秒前
ll完成签到,获得积分10
13秒前
13秒前
小卡拉米应助黎明采纳,获得10
13秒前
XiaoYuuu完成签到,获得积分10
13秒前
FashionBoy应助喂喂喂采纳,获得10
14秒前
Lei完成签到,获得积分10
14秒前
饭米粒发布了新的文献求助10
17秒前
17秒前
魔音甜菜完成签到,获得积分10
17秒前
ankang完成签到,获得积分10
17秒前
17秒前
18秒前
度帕明完成签到,获得积分10
19秒前
Jasper应助粗心的无剑采纳,获得10
19秒前
FashionBoy应助甜蜜的松思采纳,获得10
19秒前
20秒前
迅速的谷菱关注了科研通微信公众号
20秒前
20秒前
ankang发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524