亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial neural network model of catalytic coal gasification in fixed bed

产量(工程) 催化作用 人工神经网络 碳纤维 级联 甲烷 煤气化 工艺工程 制氢 废物管理 环境科学 化学 材料科学 化学工程 计算机科学 工程类 有机化学 人工智能 复合材料 复合数
作者
Weiwei Li,Yao Song
出处
期刊:Journal of The Energy Institute [Elsevier BV]
卷期号:105: 176-183 被引量:11
标识
DOI:10.1016/j.joei.2022.08.012
摘要

Catalytic coal gasification is a cost-effective way to utilize coal to produce hydrogen or methane. Because of complex interactions among hydrodynamics and chemical reactions with catalyst, it was very difficult to predict hydrogen yield and carbon conversion. Therefore, three kinds of artificial neural network (ANN) models, including feed-forward back propagation neural network (FFBP), cascade-forward back propagation neural network with Levenberge Marquardt algorithms (CFBP), and cascade-forward back propagation neural network with genetic algorithm (CFBP-GA) were used to predict these processes. Three kinds of input parameters were used, such as coal ultimate analyses, coal proximate analyses and operation conditions. Gas yield and carbon conversion were taken as output parameters. R2 of all three established ANN models were above 0.9. The CFBP-GA showed good performance with E2 = 0.000241 and R2 = 0.9978 than the other two ANN models. And then, the model was used to predict the effects of temperature, catalyst type and catalyst loading on carbon conversion and hydrogen yield. The most important three factors for carbon conversion and hydrogen yield were catalyst type, catalyst loading and temperature based on relative importance analysis. The good performances were indicated the ANN model was an effective way to predict hydrogen production and carbon conversion of catalytic coal gasification in fixed bed quickly and accurately, and it could be also extended to other carbon resources to produce hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏震坤发布了新的文献求助10
2秒前
9秒前
10秒前
容若发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
18秒前
情怀应助容若采纳,获得10
31秒前
活力的妙菡完成签到,获得积分20
32秒前
58秒前
舒服的觅云完成签到,获得积分10
1分钟前
苏震坤发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
葛力完成签到,获得积分20
1分钟前
葛力发布了新的文献求助10
1分钟前
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助葛力采纳,获得10
2分钟前
老迟到的梦旋完成签到 ,获得积分10
2分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
Licyan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助爱听歌笑寒采纳,获得10
3分钟前
jimmy_bytheway完成签到,获得积分0
3分钟前
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
3分钟前
重庆森林发布了新的文献求助10
3分钟前
容若发布了新的文献求助10
4分钟前
重庆森林完成签到,获得积分20
4分钟前
jinyue完成签到 ,获得积分10
4分钟前
huxuehong完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127