Artificial neural network model of catalytic coal gasification in fixed bed

产量(工程) 催化作用 人工神经网络 碳纤维 级联 甲烷 煤气化 工艺工程 制氢 废物管理 环境科学 化学 材料科学 化学工程 计算机科学 工程类 有机化学 人工智能 复合材料 复合数
作者
Weiwei Li,Yan Song
出处
期刊:Journal of The Energy Institute [Elsevier]
卷期号:105: 176-183 被引量:5
标识
DOI:10.1016/j.joei.2022.08.012
摘要

Catalytic coal gasification is a cost-effective way to utilize coal to produce hydrogen or methane. Because of complex interactions among hydrodynamics and chemical reactions with catalyst, it was very difficult to predict hydrogen yield and carbon conversion. Therefore, three kinds of artificial neural network (ANN) models, including feed-forward back propagation neural network (FFBP), cascade-forward back propagation neural network with Levenberge Marquardt algorithms (CFBP), and cascade-forward back propagation neural network with genetic algorithm (CFBP-GA) were used to predict these processes. Three kinds of input parameters were used, such as coal ultimate analyses, coal proximate analyses and operation conditions. Gas yield and carbon conversion were taken as output parameters. R2 of all three established ANN models were above 0.9. The CFBP-GA showed good performance with E2 = 0.000241 and R2 = 0.9978 than the other two ANN models. And then, the model was used to predict the effects of temperature, catalyst type and catalyst loading on carbon conversion and hydrogen yield. The most important three factors for carbon conversion and hydrogen yield were catalyst type, catalyst loading and temperature based on relative importance analysis. The good performances were indicated the ANN model was an effective way to predict hydrogen production and carbon conversion of catalytic coal gasification in fixed bed quickly and accurately, and it could be also extended to other carbon resources to produce hydrogen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俺村俺最牛完成签到,获得积分10
刚刚
gyx发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
梅梅完成签到,获得积分10
5秒前
眼睛大大炮完成签到,获得积分10
5秒前
Tjx完成签到,获得积分10
5秒前
6秒前
好运连连完成签到 ,获得积分10
6秒前
6秒前
Lig完成签到,获得积分10
7秒前
8秒前
9秒前
梅梅发布了新的文献求助10
9秒前
9秒前
曾经可乐完成签到 ,获得积分10
9秒前
三泥完成签到,获得积分10
10秒前
10秒前
WIK发布了新的文献求助10
10秒前
嘻哈学习完成签到,获得积分10
11秒前
orixero应助woshisb采纳,获得10
11秒前
11秒前
喻雅晴发布了新的文献求助10
12秒前
安静访曼关注了科研通微信公众号
13秒前
13秒前
丰富广缘完成签到 ,获得积分10
14秒前
15秒前
无糖发布了新的文献求助10
15秒前
雪城发布了新的文献求助10
15秒前
19秒前
我是老大应助无糖采纳,获得10
20秒前
阳谷光完成签到,获得积分10
21秒前
程瀚砚完成签到,获得积分10
21秒前
22秒前
包包琪完成签到 ,获得积分10
23秒前
23秒前
24秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304647
求助须知:如何正确求助?哪些是违规求助? 2938674
关于积分的说明 8489391
捐赠科研通 2613136
什么是DOI,文献DOI怎么找? 1427148
科研通“疑难数据库(出版商)”最低求助积分说明 662899
邀请新用户注册赠送积分活动 647507