Individualized Risk Prediction for Improved Chronic Wound Management

危险分层 医学 重症监护医学 风险分析(工程) 预测建模 临床实习 慢性伤口 风险评估 回归 计算机科学 机器学习 外科 物理疗法 内科学 统计 计算机安全 数学 伤口愈合
作者
Vladica Veličković,Tim Spelman,M. F. Clark,Sebastian Probst,David G. Armstrong,Ewout W. Steyerberg
出处
期刊:Advances in wound care [Mary Ann Liebert]
卷期号:12 (7): 387-398 被引量:2
标识
DOI:10.1089/wound.2022.0017
摘要

Significance: Chronic wounds are associated with significant morbidity, marked loss of quality of life, and considerable economic burden. Evidence-based risk prediction to guide improved wound prevention and treatment is limited by the complexity in their etiology, clinical underreporting, and a lack of studies using large high-quality datasets. Recent Advancements: The objective of this review is to summarize key components and challenges in the development of personalized risk prediction tools for both prevention and management of chronic wounds, while highlighting several innovations in the development of better risk stratification. Critical Issues: Regression-based risk prediction approaches remain important for assessment of prognosis and risk stratification in chronic wound management. Advances in statistical computing have boosted the development of several promising machine learning (ML) and other semiautomated classification tools. These methods may be better placed to handle large number of wound healing risk factors from large datasets, potentially resulting in better risk prediction when combined with conventional methods and clinical experience and expertise. Future Directions: Where the number of predictors is large and heterogenous, the correlations between various risk factors complex, and very large data sets are available, ML may prove a powerful adjuvant for risk stratifying patients predisposed to chronic wounds. Conventional regression-based approaches remain important, particularly where the number of predictors is relatively small. Translating estimated risk derived from ML algorithms into practical prediction tools for use in clinical practice remains challenging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助ekswai采纳,获得30
1秒前
1秒前
可爱的函函应助无奈采纳,获得10
1秒前
1秒前
2秒前
我是老大应助kigyccwh采纳,获得10
2秒前
报歌科研完成签到 ,获得积分10
3秒前
fouli发布了新的文献求助10
4秒前
生椰拿铁完成签到 ,获得积分10
5秒前
研友_ZbMNPn完成签到,获得积分10
6秒前
7秒前
毛豆应助ice采纳,获得10
8秒前
wzjs发布了新的文献求助10
9秒前
10秒前
10秒前
zhouxinxiao完成签到,获得积分10
10秒前
12秒前
a1423072381完成签到,获得积分20
13秒前
SciGPT应助军八神马超采纳,获得10
13秒前
子车茗应助虚拟的涵山采纳,获得30
15秒前
eunwonshua发布了新的文献求助10
16秒前
16秒前
逃亡的小狗完成签到,获得积分10
16秒前
SYLH应助火火火木采纳,获得50
16秒前
cloud完成签到,获得积分10
16秒前
郭文博发布了新的文献求助10
17秒前
在水一方应助虚心烧鹅采纳,获得10
18秒前
19秒前
bingbing发布了新的文献求助10
21秒前
zhuxi发布了新的文献求助10
21秒前
eunwonshua完成签到,获得积分10
21秒前
古月完成签到 ,获得积分10
22秒前
24秒前
24秒前
lrq发布了新的文献求助10
24秒前
24秒前
ztt完成签到,获得积分20
25秒前
小哲完成签到 ,获得积分10
27秒前
28秒前
乐乐应助Jacqueline777采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465938
求助须知:如何正确求助?哪些是违规求助? 3058897
关于积分的说明 9063789
捐赠科研通 2749294
什么是DOI,文献DOI怎么找? 1508454
科研通“疑难数据库(出版商)”最低求助积分说明 696922
邀请新用户注册赠送积分活动 696607