领域(数学)
热导率
复杂系统
玻尔兹曼方程
热电效应
热的
发射率
工作(物理)
瞬态(计算机编程)
热电材料
数据科学
计算机科学
材料科学
工程物理
机械工程
系统工程
纳米技术
工程类
人工智能
物理
热力学
数学
纯数学
量子力学
复合材料
气象学
光学
操作系统
作者
Man Li,Liyi Dai,Yongjie Hu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-09-02
卷期号:7 (10): 3204-3226
被引量:8
标识
DOI:10.1021/acsenergylett.2c01836
摘要
Recent advances in machine learning (ML) have impacted research communities based on statistical perspectives and uncovered invisibles from conventional standpoints. Though the field is still in the early stage, this progress has driven the thermal science and engineering communities to apply such cutting-edge toolsets for analyzing complex data, unraveling abstruse patterns, and discovering non-intuitive principles. In this work, we present a holistic overview of the applications and future opportunities of ML methods on crucial topics in thermal energy research, from bottom-up materials discovery to top-down system design across atomistic levels to multi-scales. In particular, we focus on a spectrum of impressive ML endeavors investigating the state-of-the-art thermal transport modeling (density functional theory, molecular dynamics, and Boltzmann transport equation), different families of materials (semiconductors, polymers, alloys, and composites), assorted aspects of thermal properties (conductivity, emissivity, stability, and thermoelectricity), and engineering prediction and optimization (devices and systems). We discuss the promises and challenges of current ML approaches and provide perspectives for future directions and new algorithms that could make further impacts on thermal energy research.
科研通智能强力驱动
Strongly Powered by AbleSci AI