Self-Supervised Simple Siamese Framework for Fault Diagnosis of Rotating Machinery With Unlabeled Samples

简单(哲学) 计算机科学 人工智能 模式识别(心理学) 断层(地质) 机器学习 生物系统 生物 哲学 认识论 古生物学
作者
Wenqing Wan,Jinglong Chen,Zitong Zhou,Zhen Shi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6380-6392 被引量:27
标识
DOI:10.1109/tnnls.2022.3209332
摘要

Fault diagnosis is vital to ensuring the security of rotating machinery operations. While fault data obtained from mechanical equipment for this issue are often insufficient and of no labels. In this case, supervised algorithms cannot come into play. Hence, this article proposes a self-supervised simple Siamese framework (SSF) for bearing fault diagnosis based on the contrastive learning algorithm SimSiam which uses a simplified Siamese network to find the distinguishable features of different fault categories. SSF consists of a weight-sharing encoder applied on two inputs, a nonlinear predictor and a linear classifier. SSF learns invariant characteristics of fault samples via maximizing the similarity between two views of each inputted sample. Several data augmentation (DA) methods for vibration signals, which provide different sample views for the model, are also studied, for it is crucial for contrastive learning. After fine-tuning the learned encoder and a linear layer classifier with a small subset of labeled data (1%–5% of the total samples), the network achieves satisfactory performance for bearing fault diagnosis. A series of experiments based on the data from three different scenarios are used to verify the proposed methods, getting 100%, 99.38%, and 98.87% accuracy separately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董小天天完成签到,获得积分10
1秒前
jingle完成签到 ,获得积分10
1秒前
小菜完成签到 ,获得积分10
2秒前
2秒前
3秒前
知还完成签到,获得积分10
4秒前
4秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
海豚发布了新的文献求助10
9秒前
健忘洋葱完成签到 ,获得积分10
9秒前
大怪物发布了新的文献求助10
10秒前
maybe发布了新的文献求助10
10秒前
11秒前
11秒前
FashionBoy应助陆访文采纳,获得10
11秒前
bkagyin应助与枫采纳,获得10
12秒前
12秒前
丘比特应助听雨眠采纳,获得10
13秒前
14秒前
一二发布了新的文献求助20
14秒前
15秒前
科目三应助轻松雁蓉采纳,获得10
16秒前
SCI完成签到,获得积分10
16秒前
星辰大海应助yangyan采纳,获得10
16秒前
景凤灵完成签到,获得积分10
16秒前
fyy发布了新的文献求助10
17秒前
zhang发布了新的文献求助10
17秒前
花源应助飞天小女警采纳,获得10
17秒前
17秒前
光亮笑柳发布了新的文献求助10
18秒前
蒋美桥发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039