亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of EMT-associated LncRNA Signature for Predicting the Prognosis of Patients with Endometrial Cancer

接收机工作特性 列线图 比例危险模型 子宫内膜癌 肿瘤科 单变量 内科学 医学 逐步回归 生存分析 阶段(地层学) 癌症 多元统计 生物 计算机科学 机器学习 古生物学
作者
Wan Shu,Ziwei Wang,Wei Zhang,Jun Zhang,Rong Zhao,Zhicheng Yu,Kejun Dong,Hongbo Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:26 (8): 1488-1502 被引量:1
标识
DOI:10.2174/1386207325666221005122554
摘要

Background: Endometrial cancer (EC) is one of the most normal malignancies globally. Growing evidence suggests epithelial–mesenchymal transition (EMT) related markers are closely correlated with poor prognosis of EC. However, the relationship between multiple EMT-associated long non-coding RNAs (lncRNAs) and the prognosis of EC has not yet been studied. Methods: The transcriptome data and clinical information of EC cases were obtained from The Cancer Genome Atlas (TCGA), respectively. Then, we identified differentially expressed EMT-associated lncRNAs between tumor and normal tissue. Univariate cox regression analysis and multivariate stepwise Cox regression analysis was applied to identify EMT-associated lncRNAs that related to overall survival (OS). Kaplan-Meier curve, receiver operating characteristic (ROC), nomograms and multi-index ROC curves were further established to evaluate the performance of the prognostic signature. In addition, we also investigated the distribution of immune cell characteristics, sensitivity to immune checkpoint inhibitor (ICI) and chemotherapeutics, and tumor mutation burden (TMB) between high- and low-risk score predicated on a prognostic model. Results: We established nine EMT-associated lncRNA signature to predict the OS of EC, the area under the ROC curve (AUC) of the risk score has better values compared with other clinical characteristics, indicating the accuracy of the prognostic signature. As revealed by multivariate Cox regression, the prognosis model independently predicted EC prognosis. Moreover, the signature and the EMT-associated lncRNAs showed significant correlations with other clinical characteristics,including . Multi-index ROC curves for estimating 1-, 3- and 5-year overall survival (OS) of EC patients showed good predictive accuracy with AUCs of 0.731, 0.791, and 0.782, respectively. The high-risk group had specific tumor immune infiltration, insensitive to ICI, higher chemotherapeutics sensitivity and higher expression of TP53 mutation. Finally, the five lncRNAs of signature was further verified by qRT-PCR. Conclusion: We constructed an EMT-associated lncRNA signature that can predict the prognosis of EC effectively, and the prognostic signature also played an essential role in the TME; thus, the establishment of EMT-associated lncRNA signature may provide new perspectives for the treatment of EC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kamalika完成签到,获得积分10
6秒前
9秒前
xun发布了新的文献求助10
14秒前
14秒前
CodeCraft应助xun采纳,获得10
22秒前
39秒前
42秒前
xun发布了新的文献求助10
49秒前
56秒前
1分钟前
1分钟前
Eugene完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xun完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
af完成签到,获得积分10
2分钟前
3分钟前
婕仔发布了新的文献求助10
3分钟前
3分钟前
婕仔完成签到,获得积分10
3分钟前
花椰菜完成签到,获得积分20
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
科目三应助花椰菜采纳,获得10
3分钟前
3分钟前
4分钟前
花椰菜发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088