清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of EMT-associated LncRNA Signature for Predicting the Prognosis of Patients with Endometrial Cancer

接收机工作特性 列线图 比例危险模型 子宫内膜癌 肿瘤科 单变量 内科学 医学 逐步回归 生存分析 阶段(地层学) 癌症 多元统计 生物 计算机科学 机器学习 古生物学
作者
Wan Shu,Ziwei Wang,Wei Zhang,Jun Zhang,Rong Zhao,Zhicheng Yu,Kejun Dong,Hongbo Wang
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:26 (8): 1488-1502 被引量:1
标识
DOI:10.2174/1386207325666221005122554
摘要

Background: Endometrial cancer (EC) is one of the most normal malignancies globally. Growing evidence suggests epithelial–mesenchymal transition (EMT) related markers are closely correlated with poor prognosis of EC. However, the relationship between multiple EMT-associated long non-coding RNAs (lncRNAs) and the prognosis of EC has not yet been studied. Methods: The transcriptome data and clinical information of EC cases were obtained from The Cancer Genome Atlas (TCGA), respectively. Then, we identified differentially expressed EMT-associated lncRNAs between tumor and normal tissue. Univariate cox regression analysis and multivariate stepwise Cox regression analysis was applied to identify EMT-associated lncRNAs that related to overall survival (OS). Kaplan-Meier curve, receiver operating characteristic (ROC), nomograms and multi-index ROC curves were further established to evaluate the performance of the prognostic signature. In addition, we also investigated the distribution of immune cell characteristics, sensitivity to immune checkpoint inhibitor (ICI) and chemotherapeutics, and tumor mutation burden (TMB) between high- and low-risk score predicated on a prognostic model. Results: We established nine EMT-associated lncRNA signature to predict the OS of EC, the area under the ROC curve (AUC) of the risk score has better values compared with other clinical characteristics, indicating the accuracy of the prognostic signature. As revealed by multivariate Cox regression, the prognosis model independently predicted EC prognosis. Moreover, the signature and the EMT-associated lncRNAs showed significant correlations with other clinical characteristics,including . Multi-index ROC curves for estimating 1-, 3- and 5-year overall survival (OS) of EC patients showed good predictive accuracy with AUCs of 0.731, 0.791, and 0.782, respectively. The high-risk group had specific tumor immune infiltration, insensitive to ICI, higher chemotherapeutics sensitivity and higher expression of TP53 mutation. Finally, the five lncRNAs of signature was further verified by qRT-PCR. Conclusion: We constructed an EMT-associated lncRNA signature that can predict the prognosis of EC effectively, and the prognostic signature also played an essential role in the TME; thus, the establishment of EMT-associated lncRNA signature may provide new perspectives for the treatment of EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
5秒前
woxinyouyou完成签到,获得积分0
17秒前
Tales完成签到 ,获得积分10
21秒前
所所应助DustxhX采纳,获得10
25秒前
xue完成签到 ,获得积分10
37秒前
冰凌心恋完成签到,获得积分10
58秒前
1分钟前
张wx_100完成签到,获得积分10
1分钟前
QYQ完成签到 ,获得积分10
1分钟前
山山完成签到 ,获得积分10
2分钟前
2分钟前
Chen完成签到 ,获得积分10
2分钟前
CH完成签到,获得积分10
3分钟前
wendy完成签到,获得积分10
3分钟前
科研通AI5应助梁晨采纳,获得10
3分钟前
发个15分的完成签到 ,获得积分10
4分钟前
4分钟前
培培完成签到 ,获得积分10
4分钟前
可靠若云完成签到,获得积分10
5分钟前
萌兴完成签到 ,获得积分10
5分钟前
elisa828完成签到,获得积分10
5分钟前
5分钟前
stephanie_han完成签到,获得积分10
6分钟前
向阳而生完成签到,获得积分10
6分钟前
楼少博发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
一盏壶完成签到,获得积分10
7分钟前
老实的乐儿完成签到 ,获得积分10
7分钟前
7分钟前
月儿完成签到 ,获得积分10
7分钟前
好运常在完成签到 ,获得积分10
8分钟前
逍遥游完成签到,获得积分10
11分钟前
11分钟前
John发布了新的文献求助10
12分钟前
tszjw168完成签到 ,获得积分10
12分钟前
量子星尘发布了新的文献求助10
13分钟前
云深不知处完成签到,获得积分10
13分钟前
Qing完成签到 ,获得积分10
13分钟前
ghost发布了新的文献求助20
13分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957970
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133286
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116638