Variational Inference for Training Graph Neural Networks in Low-Data Regime through Joint Structure-Label Estimation

推论 计算机科学 图形 图形模型 人工智能 机器学习 一般化 人工神经网络 半监督学习 生成模型 节点(物理) 标记数据 概率逻辑 模式识别(心理学) 理论计算机科学 生成语法 数学 工程类 数学分析 结构工程
作者
Danning Lao,Xinyu Yang,Qitian Wu,Junchi Yan
标识
DOI:10.1145/3534678.3539283
摘要

Graph Neural Networks (GNNs) are one of the prominent methods to solve semi-supervised learning on graphs. However, most of the existing GNN models often need sufficient observed data to allow for effective learning and generalization. In real-world scenarios where complete input graph structure and sufficient node labels might not be achieved easily, GNN models would encounter with severe performance degradation. To address this problem, we propose WSGNN, short for weakly-supervised graph neural network. WSGNN is a flexible probabilistic generative framework which harnesses variational inference approach to solve graph semi-supervised learning in a label-structure joint estimation manner. It collaboratively learns task-related new graph structure and node representations through a two-branch network, and targets a composite variational objective derived from underlying data generation distribution concerning the inter-dependence between scarce observed data and massive missing data. Especially, under weakly-supervised low-data regime where labeled nodes and observed edges are both very limited, extensive experimental results on node classification and link prediction over common benchmarks demonstrate the state-of-the-art performance of WSGNN over strong competitors. Concretely, when only 1 label per class and 1% edges are observed on Cora, WSGNN maintains a decent 52.00% classification accuracy, exceeding GCN by 75.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王老吉完成签到 ,获得积分10
2秒前
映城应助现代书雪采纳,获得30
3秒前
乐乐应助qwe采纳,获得10
3秒前
知足常乐完成签到 ,获得积分10
3秒前
斯文败类应助红甲采纳,获得10
4秒前
慕青应助激昂的寒荷采纳,获得10
5秒前
U点笨完成签到 ,获得积分10
6秒前
7秒前
丘比特应助CHAIZH采纳,获得10
7秒前
汉堡包应助小草三心采纳,获得10
7秒前
ylh发布了新的文献求助10
10秒前
10秒前
丘比特应助Hengjian_Pu采纳,获得10
11秒前
淑儿哥哥完成签到,获得积分10
11秒前
12秒前
芋泥啵啵完成签到,获得积分20
13秒前
congxue完成签到,获得积分10
13秒前
13秒前
Jasper应助ff采纳,获得10
13秒前
Lzt发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
H180发布了新的文献求助10
17秒前
CHAIZH发布了新的文献求助10
18秒前
18秒前
18秒前
ff发布了新的文献求助10
21秒前
甜甜发布了新的文献求助10
22秒前
22秒前
apt发布了新的文献求助10
22秒前
hqq完成签到 ,获得积分10
26秒前
华仔应助香菇蛋采纳,获得10
26秒前
yyyy完成签到 ,获得积分10
28秒前
CodeCraft应助芋泥啵啵采纳,获得10
28秒前
31秒前
李健的小迷弟应助houxufeng采纳,获得10
31秒前
我是老大应助张豪杰采纳,获得10
32秒前
热心市民小红花应助ysw采纳,获得10
33秒前
昵称完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309