Survival prediction models: an introduction to discrete-time modeling

审查(临床试验) 计算机科学 机器学习 比例危险模型 预测建模 人工智能 加速失效时间模型 事件(粒子物理) 非参数统计 随机森林 数据挖掘 生存分析 统计 协变量 数学 物理 量子力学
作者
Krithika Suresh,Cameron Severn,Debashis Ghosh
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:22 (1) 被引量:31
标识
DOI:10.1186/s12874-022-01679-6
摘要

Abstract Background Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed or modified to account for the censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification algorithms and their available software to predict survival outcomes. Methods Discrete-time survival models are applied to a person-period data set to predict the hazard of experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics that account for censoring, we compare the predictions from parametric and machine learning classification approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction models. We outline the process for training and validating discrete-time prediction models, and demonstrate its application using the open-source R statistical programming environment. Results Using publicly available data sets, we show that some discrete-time prediction models achieve better prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a machine learning algorithm adapted to survival data, also had improved performance compared to the Cox model, but was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the discrete time-to-event framework, the relative performance of the different methods varied depending on the data set. Conclusions We present a guide for developing survival prediction models using discrete-time methods and assessing their predictive performance with the aim of encouraging their use in medical research settings. These methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors. They can also be extended to accommodate new binary classification algorithms as they become available. We provide R code for fitting discrete-time survival prediction models in a github repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
顾矜应助小火车采纳,获得10
1秒前
南亭发布了新的文献求助10
1秒前
wang发布了新的文献求助10
3秒前
lonelylong发布了新的文献求助30
4秒前
小姜完成签到 ,获得积分10
4秒前
无私的发卡完成签到,获得积分10
5秒前
科研通AI6应助SK采纳,获得10
6秒前
FashionBoy应助lf采纳,获得10
6秒前
6秒前
8秒前
在水一方应助nn采纳,获得10
8秒前
默默荔枝发布了新的文献求助30
8秒前
马一凡完成签到,获得积分0
9秒前
yoyo20012623完成签到,获得积分10
9秒前
浮游应助秋风暖暖采纳,获得30
10秒前
汉堡包应助大佬求文献采纳,获得30
10秒前
yyy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
爱科研的光催人完成签到,获得积分10
11秒前
搜集达人应助minifox采纳,获得10
11秒前
一个靓仔应助A2M1采纳,获得10
12秒前
拒绝emo完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
17秒前
17秒前
传奇3应助CC采纳,获得10
18秒前
nn发布了新的文献求助10
19秒前
lf发布了新的文献求助10
19秒前
开心的三毒完成签到,获得积分10
21秒前
小吕快跑完成签到,获得积分10
22秒前
踩点行动完成签到,获得积分10
22秒前
高飞给高飞的求助进行了留言
22秒前
22秒前
gww发布了新的文献求助10
23秒前
23秒前
wang完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950877
求助须知:如何正确求助?哪些是违规求助? 4213567
关于积分的说明 13105023
捐赠科研通 3995465
什么是DOI,文献DOI怎么找? 2186928
邀请新用户注册赠送积分活动 1202156
关于科研通互助平台的介绍 1115421