Survival prediction models: an introduction to discrete-time modeling

审查(临床试验) 计算机科学 机器学习 比例危险模型 预测建模 人工智能 加速失效时间模型 事件(粒子物理) 非参数统计 随机森林 数据挖掘 生存分析 统计 协变量 数学 物理 量子力学
作者
Krithika Suresh,Cameron Severn,Debashis Ghosh
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:22 (1) 被引量:31
标识
DOI:10.1186/s12874-022-01679-6
摘要

Abstract Background Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed or modified to account for the censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification algorithms and their available software to predict survival outcomes. Methods Discrete-time survival models are applied to a person-period data set to predict the hazard of experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics that account for censoring, we compare the predictions from parametric and machine learning classification approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction models. We outline the process for training and validating discrete-time prediction models, and demonstrate its application using the open-source R statistical programming environment. Results Using publicly available data sets, we show that some discrete-time prediction models achieve better prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a machine learning algorithm adapted to survival data, also had improved performance compared to the Cox model, but was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the discrete time-to-event framework, the relative performance of the different methods varied depending on the data set. Conclusions We present a guide for developing survival prediction models using discrete-time methods and assessing their predictive performance with the aim of encouraging their use in medical research settings. These methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors. They can also be extended to accommodate new binary classification algorithms as they become available. We provide R code for fitting discrete-time survival prediction models in a github repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴空万里完成签到,获得积分10
刚刚
忉怛发布了新的文献求助10
刚刚
只与你完成签到,获得积分10
1秒前
zhuxi完成签到,获得积分10
1秒前
希望天下0贩的0应助彬彬采纳,获得10
2秒前
Orange应助啦啦啦采纳,获得10
2秒前
4秒前
甜美皮卡丘完成签到,获得积分10
4秒前
star009完成签到,获得积分10
4秒前
科研通AI2S应助务实紫雪采纳,获得10
5秒前
QOP应助1.1采纳,获得10
6秒前
小苏打完成签到,获得积分10
6秒前
甜美的海瑶完成签到,获得积分10
7秒前
xuan完成签到,获得积分10
7秒前
知胜zjl完成签到 ,获得积分10
8秒前
NexusExplorer应助忉怛采纳,获得10
11秒前
丘比特应助小鹿采纳,获得30
12秒前
星晴完成签到,获得积分10
12秒前
shelia完成签到,获得积分20
12秒前
12秒前
maox1aoxin应助zhuxi采纳,获得40
13秒前
chengya发布了新的文献求助20
14秒前
早早完成签到,获得积分10
15秒前
科研通AI5应助zwk采纳,获得30
15秒前
芙瑞发布了新的文献求助10
15秒前
猛男完成签到,获得积分10
16秒前
爆米花应助aqueous采纳,获得10
17秒前
17秒前
18秒前
18秒前
19秒前
情怀应助代建成采纳,获得30
20秒前
欧阳小龙虾完成签到,获得积分10
20秒前
如意的冰双完成签到 ,获得积分10
20秒前
20秒前
羊羊羊发布了新的文献求助10
20秒前
香蕉觅云应助可靠的橘子采纳,获得10
21秒前
22秒前
SCINEXUS应助简单耳机采纳,获得50
22秒前
雪地里的脚印完成签到,获得积分10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571