重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Survival prediction models: an introduction to discrete-time modeling

审查(临床试验) 计算机科学 机器学习 比例危险模型 预测建模 人工智能 加速失效时间模型 事件(粒子物理) 非参数统计 随机森林 数据挖掘 生存分析 统计 协变量 数学 物理 量子力学
作者
Krithika Suresh,Cameron Severn,Debashis Ghosh
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1) 被引量:31
标识
DOI:10.1186/s12874-022-01679-6
摘要

Abstract Background Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed or modified to account for the censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification algorithms and their available software to predict survival outcomes. Methods Discrete-time survival models are applied to a person-period data set to predict the hazard of experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics that account for censoring, we compare the predictions from parametric and machine learning classification approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction models. We outline the process for training and validating discrete-time prediction models, and demonstrate its application using the open-source R statistical programming environment. Results Using publicly available data sets, we show that some discrete-time prediction models achieve better prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a machine learning algorithm adapted to survival data, also had improved performance compared to the Cox model, but was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the discrete time-to-event framework, the relative performance of the different methods varied depending on the data set. Conclusions We present a guide for developing survival prediction models using discrete-time methods and assessing their predictive performance with the aim of encouraging their use in medical research settings. These methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors. They can also be extended to accommodate new binary classification algorithms as they become available. We provide R code for fitting discrete-time survival prediction models in a github repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
STEAD完成签到,获得积分10
1秒前
DrPanda完成签到,获得积分10
1秒前
小太阳发布了新的文献求助10
1秒前
研友_VZG7GZ应助Penn采纳,获得10
1秒前
2秒前
无花果应助眯眯眼的语雪采纳,获得10
2秒前
卡卡罗特完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
aaaa完成签到,获得积分10
3秒前
5秒前
zhouyong完成签到,获得积分10
5秒前
浮游应助Literaturecome采纳,获得10
6秒前
masterwill发布了新的文献求助10
6秒前
lz发布了新的文献求助10
7秒前
8秒前
yafei完成签到 ,获得积分10
8秒前
dahua发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
9秒前
珂颜堂AI应助zq采纳,获得10
9秒前
Carsen完成签到,获得积分10
10秒前
10秒前
11秒前
大帅哥发布了新的文献求助10
12秒前
12秒前
风中白云发布了新的文献求助10
13秒前
13秒前
March3完成签到 ,获得积分10
14秒前
14秒前
可爱的函函应助masterwill采纳,获得10
14秒前
15秒前
doranlou发布了新的文献求助30
15秒前
想要每天睡到自然醒完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497