Survival prediction models: an introduction to discrete-time modeling

审查(临床试验) 计算机科学 机器学习 比例危险模型 预测建模 人工智能 加速失效时间模型 事件(粒子物理) 非参数统计 随机森林 数据挖掘 生存分析 统计 协变量 数学 物理 量子力学
作者
Krithika Suresh,Cameron Severn,Debashis Ghosh
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:22 (1) 被引量:31
标识
DOI:10.1186/s12874-022-01679-6
摘要

Abstract Background Prediction models for time-to-event outcomes are commonly used in biomedical research to obtain subject-specific probabilities that aid in making important clinical care decisions. There are several regression and machine learning methods for building these models that have been designed or modified to account for the censoring that occurs in time-to-event data. Discrete-time survival models, which have often been overlooked in the literature, provide an alternative approach for predictive modeling in the presence of censoring with limited loss in predictive accuracy. These models can take advantage of the range of nonparametric machine learning classification algorithms and their available software to predict survival outcomes. Methods Discrete-time survival models are applied to a person-period data set to predict the hazard of experiencing the failure event in pre-specified time intervals. This framework allows for any binary classification method to be applied to predict these conditional survival probabilities. Using time-dependent performance metrics that account for censoring, we compare the predictions from parametric and machine learning classification approaches applied within the discrete time-to-event framework to those from continuous-time survival prediction models. We outline the process for training and validating discrete-time prediction models, and demonstrate its application using the open-source R statistical programming environment. Results Using publicly available data sets, we show that some discrete-time prediction models achieve better prediction performance than the continuous-time Cox proportional hazards model. Random survival forests, a machine learning algorithm adapted to survival data, also had improved performance compared to the Cox model, but was sometimes outperformed by the discrete-time approaches. In comparing the binary classification methods in the discrete time-to-event framework, the relative performance of the different methods varied depending on the data set. Conclusions We present a guide for developing survival prediction models using discrete-time methods and assessing their predictive performance with the aim of encouraging their use in medical research settings. These methods can be applied to data sets that have continuous time-to-event outcomes and multiple clinical predictors. They can also be extended to accommodate new binary classification algorithms as they become available. We provide R code for fitting discrete-time survival prediction models in a github repository.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
答辩发布了新的文献求助10
2秒前
2秒前
2秒前
大模型应助阁主采纳,获得10
2秒前
3秒前
4秒前
4秒前
popcorn完成签到,获得积分10
4秒前
4秒前
4秒前
twotwomi完成签到,获得积分10
4秒前
ly完成签到,获得积分20
5秒前
ChenYifei完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Lucas应助来日方长采纳,获得10
6秒前
chang发布了新的文献求助10
6秒前
小巫发布了新的文献求助10
7秒前
周娅敏发布了新的文献求助10
8秒前
华仔应助答辩采纳,获得10
8秒前
caixiayin发布了新的文献求助10
8秒前
8秒前
威武的冷风关注了科研通微信公众号
9秒前
9秒前
9秒前
9秒前
10秒前
科研通AI2S应助奋斗若风采纳,获得10
10秒前
ly发布了新的文献求助10
10秒前
11秒前
xiang完成签到,获得积分10
11秒前
李爱国应助迷恋采纳,获得10
11秒前
在摆烂的dog完成签到,获得积分10
12秒前
星辰大海应助刘源采纳,获得10
12秒前
小巫完成签到,获得积分10
13秒前
ironsilica完成签到,获得积分10
13秒前
土豪的土豆完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650