An interpretable machine learning model for individualized gonadotrophin starting dose selection during ovarian stimulation

男科 医学 妇科
作者
Michael Fanton,Veronica Nutting,Arielle Rothman,Paxton Maeder-York,Eduardo Hariton,Oleksii O. Barash,Louis N. Weckstein,Denny Sakkas,Alan B. Copperman,Kevin Loewke
出处
期刊:Reproductive Biomedicine Online [Elsevier]
卷期号:45 (6): 1152-1159 被引量:28
标识
DOI:10.1016/j.rbmo.2022.07.010
摘要

Can we develop an interpretable machine learning model that optimizes starting gonadotrophin dose selection in terms of mature oocytes (metaphase II [MII]), fertilized oocytes (2 pronuclear [2PN]) and usable blastocysts?This was a retrospective study of patients undergoing autologous IVF cycles from 2014 to 2020 (n = 18,591) in three assisted reproductive technology centres in the USA. For each patient cycle, an individual dose-response curve was generated from the 100 most similar patients identified using a K-nearest neighbours model. Patients were labelled as dose-responsive if their dose-response curve showed a region that maximized MII oocytes, and flat-responsive otherwise.Analysis of the dose-response curves showed that 30% of cycles were dose-responsive and 64% were flat-responsive. After propensity score matching, patients in the dose-responsive group who received an optimal starting dose of FSH had on average 1.5 more MII oocytes, 1.2 more 2PN embryos and 0.6 more usable blastocysts using 10 IU less of starting FSH and 195 IU less of total FSH compared with patients given non-optimal doses. In the flat-responsive group, patients who received a low starting dose of FSH had on average 0.3 more MII oocytes, 0.3 more 2PN embryos and 0.2 more usable blastocysts using 149 IU less of starting FSH and 1375 IU less of total FSH compared with patients with a high starting dose.This study demonstrates retrospectively that using a machine learning model for selecting starting FSH can achieve optimal laboratory outcomes while reducing the amount of starting and total FSH used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
沙脑发布了新的文献求助10
4秒前
传奇3应助任性的冷梅采纳,获得10
4秒前
大道无形我有型完成签到,获得积分10
5秒前
一一应助香蕉闭月采纳,获得10
5秒前
细心灭龙发布了新的文献求助10
5秒前
6秒前
6秒前
思源应助zxh123采纳,获得10
6秒前
王sir完成签到,获得积分10
7秒前
shirely发布了新的文献求助10
9秒前
谢晋完成签到 ,获得积分20
9秒前
快乐蘑菇发布了新的文献求助10
10秒前
10秒前
10秒前
zxcsdfa应助怕孤独的鹭洋采纳,获得10
11秒前
淡然伊发布了新的文献求助10
12秒前
17秒前
酷波er应助cyp采纳,获得10
18秒前
可爱的函函应助杨凡采纳,获得10
19秒前
19秒前
Nathan完成签到,获得积分10
19秒前
所所应助淡然伊采纳,获得10
20秒前
21秒前
21秒前
24秒前
中和皇极应助代小葵采纳,获得10
26秒前
beituo发布了新的文献求助10
27秒前
tongbuxiang完成签到,获得积分10
27秒前
28秒前
充电宝应助谢晋采纳,获得30
28秒前
细心灭龙发布了新的文献求助10
29秒前
chen_lin发布了新的文献求助10
30秒前
31秒前
32秒前
烟花应助科研通管家采纳,获得100
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得30
33秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462725
求助须知:如何正确求助?哪些是违规求助? 3056239
关于积分的说明 9051164
捐赠科研通 2745868
什么是DOI,文献DOI怎么找? 1506668
科研通“疑难数据库(出版商)”最低求助积分说明 696188
邀请新用户注册赠送积分活动 695720