材料科学
电磁干扰
石墨烯
MXenes公司
电磁屏蔽
气凝胶
电磁干扰
复合材料
氧化物
纳米技术
电气工程
工程类
冶金
作者
Xianhong Zheng,Jinhao Tang,Peng Wang,Zongqian Wang,Lihua Zou,Changlong Li
标识
DOI:10.1016/j.jcis.2022.08.019
摘要
Flexible, lightweight, and durable electromagnetic interference (EMI) shielding materials are urgently required to solve the increasingly serious electromagnetic radiation pollution. Transition metal carbides/nitrides (MXenes) are promising candidates for EMI shielding materials because of their excellent metallic electrical conductivity. However, MXenes are highly susceptible to oxidization when exposed to wet environments, leading to the loss of their functional properties and degradation of reliability and stability. Herein, an interfused core-shell heterogeneous reduced graphene oxide (rGO)/MXene aerogel (GMA) is designed for the first time via coaxial wet spinning and freeze-drying. The fabricated GMAs exhibit excellent EMI shielding performance, and the EMI shielding effectiveness (SE) and specific EMI SE can be up to 83.3 dB and 3119 dB·cm3/g, respectively, which is higher than most carbon-based and MXene-based aerogels and foams. More importantly, GMAs have only a 17.4 % degradation in EMI shielding performance after 120 days due to the protection of hydrophobic graphene sheath, exhibiting superior EMI shielding durability to its MXene film counterpart. Moreover, the hydrophobic GMAs exhibit good oil/water separation and thermal insulation performance. The interfused core-shell GMAs are highly promising for applications in durable EMI shielding, thermal insulation, oil/water separation and sensors, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI